3 resultados para Linear program model
em Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom
Resumo:
This paper extends the Nelson-Siegel linear factor model by developing a flexible macro-finance framework for modeling and forecasting the term structure of US interest rates. Our approach is robust to parameter uncertainty and structural change, as we consider instabilities in parameters and volatilities, and our model averaging method allows for investors' model uncertainty over time. Our time-varying parameter Nelson-Siegel Dynamic Model Averaging (NS-DMA) predicts yields better than standard benchmarks and successfully captures plausible time-varying term premia in real time. The proposed model has significant in-sample and out-of-sample predictability for excess bond returns, and the predictability is of economic value.
Resumo:
This study addresses the issue of the presence of a unit root on the growth rate estimation by the least-squares approach. We argue that when the log of a variable contains a unit root, i.e., it is not stationary then the growth rate estimate from the log-linear trend model is not a valid representation of the actual growth of the series. In fact, under such a situation, we show that the growth of the series is the cumulative impact of a stochastic process. As such the growth estimate from such a model is just a spurious representation of the actual growth of the series, which we refer to as a “pseudo growth rate”. Hence such an estimate should be interpreted with caution. On the other hand, we highlight that the statistical representation of a series as containing a unit root is not easy to separate from an alternative description which represents the series as fundamentally deterministic (no unit root) but containing a structural break. In search of a way around this, our study presents a survey of both the theoretical and empirical literature on unit root tests that takes into account possible structural breaks. We show that when a series is trendstationary with breaks, it is possible to use the log-linear trend model to obtain well defined estimates of growth rates for sub-periods which are valid representations of the actual growth of the series. Finally, to highlight the above issues, we carry out an empirical application whereby we estimate meaningful growth rates of real wages per worker for 51 industries from the organised manufacturing sector in India for the period 1973-2003, which are not only unbiased but also asymptotically efficient. We use these growth rate estimates to highlight the evolving inter-industry wage structure in India.
Resumo:
This paper introduces a new model of trend (or underlying) inflation. In contrast to many earlier approaches, which allow for trend inflation to evolve according to a random walk, ours is a bounded model which ensures that trend inflation is constrained to lie in an interval. The bounds of this interval can either be fixed or estimated from the data. Our model also allows for a time-varying degree of persistence in the transitory component of inflation. The bounds placed on trend inflation mean that standard econometric methods for estimating linear Gaussian state space models cannot be used and we develop a posterior simulation algorithm for estimating the bounded trend inflation model. In an empirical exercise with CPI inflation we find the model to work well, yielding more sensible measures of trend inflation and forecasting better than popular alternatives such as the unobserved components stochastic volatility model.