3 resultados para LOGISTIC REGRESSION WITH STATE-DEPENDENT SAMPLE SELECTION
em Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom
Resumo:
This paper reports on one of the first empirical attempts to investigate small firm growth and survival, and their determinants, in the Peoples’ Republic of China. The work is based on field work evidence gathered from a sample of 83 Chinese private firms (mainly SMEs) collected initially by face-to-face interviews, and subsequently by follow-up telephone interviews a year later. We extend the models of Gibrat (1931) and Jovanovic (1982), which traditionally focus on size and age alone (e.g. Brock and Evans, 1986), to a ‘comprehensive’ growth model with two types of additional explanatory variables: firm-specific (e.g. business planning); and environmental (e.g. choice of location). We estimate two econometric models: a ‘basic’ age-size-growth model; and a ‘comprehensive’ growth model, using Heckman’s two-step regression procedure. Estimation is by log-linear regression on cross-section data, with corrections for sample selection bias and heteroskedasticity. Our results refute a pure Gibrat model (but support a more general variant) and support the learning model, as regards the consequences of size and age for growth; and our extension to a comprehensive model highlights the importance of location choice and customer orientation for the growth of Chinese private firms. In the latter model, growth is explained by variables like planning, R&D orientation, market competition, elasticity of demand etc. as well as by control variables. Our work on small firm growth achieves two things. First, it upholds the validity of ‘basic’ size-age-growth models, and successfully applies them to the Chinese economy. Second, it extends the compass of such models to a ‘comprehensive’ growth model incorporating firm-specific and environmental variables.
Resumo:
This paper reports on one of the first empirical attempts to investigate small firm growth and survival, and their determinants, in the Peoples’ Republic of China. The work is based on field work evidence gathered from a sample of 83 Chinese private firms (mainly SMEs) collected initially by face-to-face interviews, and subsequently by follow-up telephone interviews a year later. We extend the models of Gibrat (1931) and Jovanovic (1982), which traditionally focus on size and age alone (e.g. Brock and Evans, 1986), to a ‘comprehensive’ growth model with two types of additional explanatory variables: firm-specific (e.g. business planning); and environmental (e.g. choice of location). We estimate two econometric models: a ‘basic’ age-size-growth model; and a ‘comprehensive’ growth model, using Heckman’s two-step regression procedure. Estimation is by log-linear regression on cross-section data, with corrections for sample selection bias and heteroskedasticity. Our results refute a pure Gibrat model (but support a more general variant) and support the learning model, as regards the consequences of size and age for growth; and our extension to a comprehensive model highlights the importance of location choice and customer orientation for the growth of Chinese private firms. In the latter model, growth is explained by variables like planning, R&D orientation, market competition, elasticity of demand etc. as well as by control variables. Our work on small firm growth achieves two things. First, it upholds the validity of ‘basic’ size-age-growth models, and successfully applies them to the Chinese economy. Second, it extends the compass of such models to a ‘comprehensive’ growth model incorporating firm-specific and environmental variables.
Resumo:
This paper seeks to identify whether there is a representative empirical Okun’s Law coefficient (OLC) and to measure its size. We carry out a meta regression analysis on a sample of 269 estimates of the OLC to uncover reasons for differences in empirical results and to estimate the ‘true’ OLC. On statistical (and other) grounds, we find it appropriate to investigate two separate subsamples, using respectively (some measure of) unemployment or output as dependent variable. Our results can be summarized as follows. First, there is evidence of type II publication bias in both sub-samples, but a type I bias is present only among the papers using some measure of unemployment as the dependent variable. Second, after correction for publication bias, authentic and statistically significant OLC effects are present in both sub-samples. Third, bias-corrected estimated true OLCs are significantly lower (in absolute value) with models using some measure of unemployment as the dependent variable. Using a bivariate MRA approach, the estimated true effects are -0.25 for the unemployment sub-sample and -0.61 for the output-sub sample; with a multivariate MRA methodology, the estimated true effects are -0.40 and -1.02 for the unemployment and the output-sub samples respectively.