5 resultados para Identification of structural damage

em Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years there has been increasing concern about the identification of parameters in dynamic stochastic general equilibrium (DSGE) models. Given the structure of DSGE models it may be difficult to determine whether a parameter is identified. For the researcher using Bayesian methods, a lack of identification may not be evident since the posterior of a parameter of interest may differ from its prior even if the parameter is unidentified. We show that this can even be the case even if the priors assumed on the structural parameters are independent. We suggest two Bayesian identification indicators that do not suffer from this difficulty and are relatively easy to compute. The first applies to DSGE models where the parameters can be partitioned into those that are known to be identified and the rest where it is not known whether they are identified. In such cases the marginal posterior of an unidentified parameter will equal the posterior expectation of the prior for that parameter conditional on the identified parameters. The second indicator is more generally applicable and considers the rate at which the posterior precision gets updated as the sample size (T) is increased. For identified parameters the posterior precision rises with T, whilst for an unidentified parameter its posterior precision may be updated but its rate of update will be slower than T. This result assumes that the identified parameters are pT-consistent, but similar differential rates of updates for identified and unidentified parameters can be established in the case of super consistent estimators. These results are illustrated by means of simple DSGE models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper compares the forecasting performance of different models which have been proposed for forecasting in the presence of structural breaks. These models differ in their treatment of the break process, the parameters defining the model which applies in each regime and the out-of-sample probability of a break occurring. In an extensive empirical evaluation involving many important macroeconomic time series, we demonstrate the presence of structural breaks and their importance for forecasting in the vast majority of cases. However, we find no single forecasting model consistently works best in the presence of structural breaks. In many cases, the formal modeling of the break process is important in achieving good forecast performance. However, there are also many cases where simple, rolling OLS forecasts perform well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper compares the forecasting performance of different models which have been proposed for forecasting in the presence of structural breaks. These models differ in their treatment of the break process, the parameters defining the model which applies in each regime and the out-of-sample probability of a break occurring. In an extensive empirical evaluation involving many important macroeconomic time series, we demonstrate the presence of structural breaks and their importance for forecasting in the vast majority of cases. However, we find no single forecasting model consistently works best in the presence of structural breaks. In many cases, the formal modeling of the break process is important in achieving good forecast performance. However, there are also many cases where simple, rolling OLS forecasts perform well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines both the in-sample and out-of-sample performance of three monetary fundamental models of exchange rates and compares their out-of-sample performance to that of a simple Random Walk model. Using a data-set consisting of five currencies at monthly frequency over the period January 1980 to December 2009 and a battery of newly developed performance measures, the paper shows that monetary models do better (in-sample and out-of-sample forecasting) than a simple Random Walk model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of structural breaks in dynamic panels are more complicated than in time series models as the bias can be either negative or positive. This paper focuses on the effects of mean shifts in otherwise stationary processes within an instrumental variable panel estimation framework. We show the sources of the bias and a Monte Carlo analysis calibrated on United States bank lending data demonstrates the size of the bias for a range of auto-regressive parameters. We also propose additional moment conditions that can be used to reduce the biases caused by shifts in the mean of the data.