6 resultados para Forecast accuracy
em Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom
Resumo:
Forecasts of differences in growth between countries serve an important role in the justification of governments’ fiscal policy stances, but are not tested for their accuracy as part of the current range of forecast evaluation methods. This paper examines forecasted and outturn growth differentials between countries to identify if there is usefulness in forecasts of “relative” growth. Using OECD forecasts and outturn values for GDP growth for (combinations of) the G7 countries between 1984 and 2010, the paper finds that the OECD’s success in predicting the relative growth of G7 countries during this period is good. For each two-country combination results indicate that relative growth forecasts are less useful for countries which have smaller outturn growth differentials.
Resumo:
Block factor methods offer an attractive approach to forecasting with many predictors. These extract the information in these predictors into factors reflecting different blocks of variables (e.g. a price block, a housing block, a financial block, etc.). However, a forecasting model which simply includes all blocks as predictors risks being over-parameterized. Thus, it is desirable to use a methodology which allows for different parsimonious forecasting models to hold at different points in time. In this paper, we use dynamic model averaging and dynamic model selection to achieve this goal. These methods automatically alter the weights attached to different forecasting models as evidence comes in about which has forecast well in the recent past. In an empirical study involving forecasting output growth and inflation using 139 UK monthly time series variables, we find that the set of predictors changes substantially over time. Furthermore, our results show that dynamic model averaging and model selection can greatly improve forecast performance relative to traditional forecasting methods.
Resumo:
Block factor methods offer an attractive approach to forecasting with many predictors. These extract the information in these predictors into factors reflecting different blocks of variables (e.g. a price block, a housing block, a financial block, etc.). However, a forecasting model which simply includes all blocks as predictors risks being over-parameterized. Thus, it is desirable to use a methodology which allows for different parsimonious forecasting models to hold at different points in time. In this paper, we use dynamic model averaging and dynamic model selection to achieve this goal. These methods automatically alter the weights attached to different forecasting model as evidence comes in about which has forecast well in the recent past. In an empirical study involving forecasting output and inflation using 139 UK monthly time series variables, we find that the set of predictors changes substantially over time. Furthermore, our results show that dynamic model averaging and model selection can greatly improve forecast performance relative to traditional forecasting methods.
Resumo:
The monetary policy reaction function of the Bank of England is estimated by the standard GMM approach and the ex-ante forecast method developed by Goodhart (2005), with particular attention to the horizons for inflation and output at which each approach gives the best fit. The horizons for the ex-ante approach are much closer to what is implied by the Bank’s view of the transmission mechanism, while the GMM approach produces an implausibly slow adjustment of the interest rate, and suffers from a weak instruments problem. These findings suggest a strong preference for the ex-ante approach.
Resumo:
The monetary policy reaction function of the Bank of England is estimated by the standard GMM approach and the ex-ante forecast method developed by Goodhart (2005), with particular attention to the horizons for inflation and output at which each approach gives the best fit. The horizons for the ex-ante approach are much closer to what is implied by the Bank’s view of the transmission mechanism, while the GMM approach produces an implausibly slow adjustment of the interest rate, and suffers from a weak instruments problem. These findings suggest a strong preference for the ex-ante approach.
Resumo:
Using survey expectations data and Markov-switching models, this paper evaluates the characteristics and evolution of investors' forecast errors about the yen/dollar exchange rate. Since our model is derived from the uncovered interest rate parity (UIRP) condition and our data cover a period of low interest rates, this study is also related to the forward premium puzzle and the currency carry trade strategy. We obtain the following results. First, with the same forecast horizon, exchange rate forecasts are homogeneous among different industry types, but within the same industry, exchange rate forecasts differ if the forecast time horizon is different. In particular, investors tend to undervalue the future exchange rate for long term forecast horizons; however, in the short run they tend to overvalue the future exchange rate. Second, while forecast errors are found to be partly driven by interest rate spreads, evidence against the UIRP is provided regardless of the forecasting time horizon; the forward premium puzzle becomes more significant in shorter term forecasting errors. Consistent with this finding, our coefficients on interest rate spreads provide indirect evidence of the yen carry trade over only a short term forecast horizon. Furthermore, the carry trade seems to be active when there is a clear indication that the interest rate will be low in the future.