2 resultados para FE model updating

em Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper demonstrates that an asset pricing model with least-squares learning can lead to bubbles and crashes as endogenous responses to the fundamentals driving asset prices. When agents are risk-averse they need to make forecasts of the conditional variance of a stock’s return. Recursive updating of both the conditional variance and the expected return implies several mechanisms through which learning impacts stock prices. Extended periods of excess volatility, bubbles and crashes arise with a frequency that depends on the extent to which past data is discounted. A central role is played by changes over time in agents’ estimates of risk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Agents have two forecasting models, one consistent with the unique rational expectations equilibrium, another that assumes a time-varying parameter structure. When agents use Bayesian updating to choose between models in a self-referential system, we find that learning dynamics lead to selection of one of the two models. However, there are parameter regions for which the non-rational forecasting model is selected in the long-run. A key structural parameter governing outcomes measures the degree of expectations feedback in Muth's model of price determination.