4 resultados para Equação de Euler
em Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom
Resumo:
These notes try to clarify some discussions on the formulation of individual intertemporal behavior under adaptive learning in representative agent models. First, we discuss two suggested approaches and related issues in the context of a simple consumption-saving model. Second, we show that the analysis of learning in the NewKeynesian monetary policy model based on “Euler equations” provides a consistent and valid approach.
Resumo:
Incorporating adaptive learning into macroeconomics requires assumptions about how agents incorporate their forecasts into their decision-making. We develop a theory of bounded rationality that we call finite-horizon learning. This approach generalizes the two existing benchmarks in the literature: Eulerequation learning, which assumes that consumption decisions are made to satisfy the one-step-ahead perceived Euler equation; and infinite-horizon learning, in which consumption today is determined optimally from an infinite-horizon optimization problem with given beliefs. In our approach, agents hold a finite forecasting/planning horizon. We find for the Ramsey model that the unique rational expectations equilibrium is E-stable at all horizons. However, transitional dynamics can differ significantly depending upon the horizon.
Resumo:
We present an envelope theorem for establishing first-order conditions in decision problems involving continuous and discrete choices. Our theorem accommodates general dynamic programming problems, even with unbounded marginal utilities. And, unlike classical envelope theorems that focus only on differentiating value functions, we accommodate other endogenous functions such as default probabilities and interest rates. Our main technical ingredient is how we establish the differentiability of a function at a point: we sandwich the function between two differentiable functions from above and below. Our theory is widely applicable. In unsecured credit models, neither interest rates nor continuation values are globally differentiable. Nevertheless, we establish an Euler equation involving marginal prices and values. In adjustment cost models, we show that first-order conditions apply universally, even if optimal policies are not (S,s). Finally, we incorporate indivisible choices into a classic dynamic insurance analysis.
Resumo:
Time-inconsistency is an essential feature of many policy problems (Kydland and Prescott, 1977). This paper presents and compares three methods for computing Markov-perfect optimal policies in stochastic nonlinear business cycle models. The methods considered include value function iteration, generalized Euler-equations, and parameterized shadow prices. In the context of a business cycle model in which a scal authority chooses government spending and income taxation optimally, while lacking the ability to commit, we show that the solutions obtained using value function iteration and generalized Euler equations are somewhat more accurate than that obtained using parameterized shadow prices. Among these three methods, we show that value function iteration can be applied easily, even to environments that include a risk-sensitive scal authority and/or inequality constraints on government spending. We show that the risk-sensitive scal authority lowers government spending and income-taxation, reducing the disincentive households face to accumulate wealth.