4 resultados para Design procedures
em Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom
Resumo:
This paper compares the forecasting performance of different models which have been proposed for forecasting in the presence of structural breaks. These models differ in their treatment of the break process, the parameters defining the model which applies in each regime and the out-of-sample probability of a break occurring. In an extensive empirical evaluation involving many important macroeconomic time series, we demonstrate the presence of structural breaks and their importance for forecasting in the vast majority of cases. However, we find no single forecasting model consistently works best in the presence of structural breaks. In many cases, the formal modeling of the break process is important in achieving good forecast performance. However, there are also many cases where simple, rolling OLS forecasts perform well.
Resumo:
This paper compares the forecasting performance of different models which have been proposed for forecasting in the presence of structural breaks. These models differ in their treatment of the break process, the parameters defining the model which applies in each regime and the out-of-sample probability of a break occurring. In an extensive empirical evaluation involving many important macroeconomic time series, we demonstrate the presence of structural breaks and their importance for forecasting in the vast majority of cases. However, we find no single forecasting model consistently works best in the presence of structural breaks. In many cases, the formal modeling of the break process is important in achieving good forecast performance. However, there are also many cases where simple, rolling OLS forecasts perform well.
Resumo:
In this paper we make three contributions to the literature on optimal Competition Law enforcement procedures. The first (which is of general interest beyond competition policy) is to clarify the concept of “legal uncertainty”, relating it to ideas in the literature on Law and Economics, but formalising the concept through various information structures which specify the probability that each firm attaches – at the time it takes an action – to the possibility of its being deemed anti-competitive were it to be investigated by a Competition Authority. We show that the existence of Type I and Type II decision errors by competition authorities is neither necessary nor sufficient for the existence of legal uncertainty, and that information structures with legal uncertainty can generate higher welfare than information structures with legal certainty – a result echoing a similar finding obtained in a completely different context and under different assumptions in earlier Law and Economics literature (Kaplow and Shavell, 1992). Our second contribution is to revisit and significantly generalise the analysis in our previous paper, Katsoulacos and Ulph (2009), involving a welfare comparison of Per Se and Effects- Based legal standards. In that analysis we considered just a single information structure under an Effects-Based standard and also penalties were exogenously fixed. Here we allow for (a) different information structures under an Effects-Based standard and (b) endogenous penalties. We obtain two main results: (i) considering all information structures a Per Se standard is never better than an Effects-Based standard; (ii) optimal penalties may be higher when there is legal uncertainty than when there is no legal uncertainty.
Resumo:
There are two ways of creating incentives for interacting agents to behave in a desired way. One is by providing appropriate payoff incentives, which is the subject of mechanism design. The other is by choosing the information that agents observe, which we refer to as information design. We consider a model of symmetric information where a designer chooses and announces the information structure about a payoff relevant state. The interacting agents observe the signal realizations and take actions which affect the welfare of both the designer and the agents. We characterize the general finite approach to deriving the optimal information structure for the designer - the one that maximizes the designer's ex ante expected utility subject to agents playing a Bayes Nash equilibrium. We then apply the general approach to a symmetric two state, two agent, and two actions environment in a parameterized underlying game and fully characterize the optimal information structure: it is never strictly optimal for the designer to use conditionally independent private signals; the optimal information structure may be a public signal or may consist of correlated private signals. Finally, we examine how changes in the underlying game affect the designer's maximum payoff. This exercise provides a joint mechanism/information design perspective.