2 resultados para Design futures

em Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an effort to meet its obligations under the Kyoto Protocol, in 2005 the European Union introduced a cap-and-trade scheme where mandated installations are allocated permits to emit CO2. Financial markets have developed that allow companies to trade these carbon permits. For the EU to achieve reductions in CO2 emissions at a minimum cost, it is necessary that companies make appropriate investments and policymakers design optimal policies. In an effort to clarify the workings of the carbon market, several recent papers have attempted to statistically model it. However, the European carbon market (EU ETS) has many institutional features that potentially impact on daily carbon prices (and associated nancial futures). As a consequence, the carbon market has properties that are quite different from conventional financial assets traded in mature markets. In this paper, we use dynamic model averaging (DMA) in order to forecast in this newly-developing market. DMA is a recently-developed statistical method which has three advantages over conventional approaches. First, it allows the coefficients on the predictors in a forecasting model to change over time. Second, it allows for the entire fore- casting model to change over time. Third, it surmounts statistical problems which arise from the large number of potential predictors that can explain carbon prices. Our empirical results indicate that there are both important policy and statistical bene ts with our approach. Statistically, we present strong evidence that there is substantial turbulence and change in the EU ETS market, and that DMA can model these features and forecast accurately compared to conventional approaches. From a policy perspective, we discuss the relative and changing role of different price drivers in the EU ETS. Finally, we document the forecast performance of DMA and discuss how this relates to the efficiency and maturity of this market.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are two ways of creating incentives for interacting agents to behave in a desired way. One is by providing appropriate payoff incentives, which is the subject of mechanism design. The other is by choosing the information that agents observe, which we refer to as information design. We consider a model of symmetric information where a designer chooses and announces the information structure about a payoff relevant state. The interacting agents observe the signal realizations and take actions which affect the welfare of both the designer and the agents. We characterize the general finite approach to deriving the optimal information structure for the designer - the one that maximizes the designer's ex ante expected utility subject to agents playing a Bayes Nash equilibrium. We then apply the general approach to a symmetric two state, two agent, and two actions environment in a parameterized underlying game and fully characterize the optimal information structure: it is never strictly optimal for the designer to use conditionally independent private signals; the optimal information structure may be a public signal or may consist of correlated private signals. Finally, we examine how changes in the underlying game affect the designer's maximum payoff. This exercise provides a joint mechanism/information design perspective.