5 resultados para Continuous programming
em Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom
Resumo:
We propose a non-equidistant Q rate matrix formula and an adaptive numerical algorithm for a continuous time Markov chain to approximate jump-diffusions with affine or non-affine functional specifications. Our approach also accommodates state-dependent jump intensity and jump distribution, a flexibility that is very hard to achieve with other numerical methods. The Kolmogorov-Smirnov test shows that the proposed Markov chain transition density converges to the one given by the likelihood expansion formula as in Ait-Sahalia (2008). We provide numerical examples for European stock option pricing in Black and Scholes (1973), Merton (1976) and Kou (2002).
Resumo:
This paper investigates dynamic completeness of financial markets in which the underlying risk process is a multi-dimensional Brownian motion and the risky securities dividends geometric Brownian motions. A sufficient condition, that the instantaneous dispersion matrix of the relative dividends is non-degenerate, was established recently in the literature for single-commodity, pure-exchange economies with many heterogenous agents, under the assumption that the intermediate flows of all dividends, utilities, and endowments are analytic functions. For the current setting, a different mathematical argument in which analyticity is not needed shows that a slightly weaker condition suffices for general pricing kernels. That is, dynamic completeness obtains irrespectively of preferences, endowments, and other structural elements (such as whether or not the budget constraints include only pure exchange, whether or not the time horizon is finite with lump-sum dividends available on the terminal date, etc.)
Resumo:
In the line opened by Kalai and Muller (1997), we explore new conditions on prefernce domains which make it possible to avoid Arrow's impossibility result. In our main theorem, we provide a complete characterization of the domains admitting nondictorial Arrovian social welfare functions with ties (i.e. including indifference in the range) by introducing a notion of strict decomposability. In the proof, we use integer programming tools, following an approach first applied to social choice theory by Sethuraman, Teo and Vohra ((2003), (2006)). In order to obtain a representation of Arrovian social welfare functions whose range can include indifference, we generalize Sethuraman et al.'s work and specify integer programs in which variables are allowed to assume values in the set {0, 1/2, 1}: indeed, we show that, there exists a one-to-one correspondence between solutions of an integer program defined on this set and the set of all Arrovian social welfare functions - without restrictions on the range.
Resumo:
Using the integer programming approach introduced by Sethuraman, Teo, and Vohra (2003), we extend the analysis of the preference domains containing an inseparable ordered pair, initiated by Kalai and Ritz (1978). We show that these domains admit not only Arrovian social welfare functions \without ties," but also Arrovian social welfare functions \with ties," since they satisfy the strictly decomposability condition introduced by Busetto, Codognato, and Tonin (2012). Moreover, we go further in the comparison between Kalai and Ritz (1978)'s inseparability and Arrow (1963)'s single-peak restrictions, showing that the former condition is more \respectable," in the sense of Muller and Satterthwaite (1985).
Resumo:
We present an envelope theorem for establishing first-order conditions in decision problems involving continuous and discrete choices. Our theorem accommodates general dynamic programming problems, even with unbounded marginal utilities. And, unlike classical envelope theorems that focus only on differentiating value functions, we accommodate other endogenous functions such as default probabilities and interest rates. Our main technical ingredient is how we establish the differentiability of a function at a point: we sandwich the function between two differentiable functions from above and below. Our theory is widely applicable. In unsecured credit models, neither interest rates nor continuation values are globally differentiable. Nevertheless, we establish an Euler equation involving marginal prices and values. In adjustment cost models, we show that first-order conditions apply universally, even if optimal policies are not (S,s). Finally, we incorporate indivisible choices into a classic dynamic insurance analysis.