2 resultados para Card games.
em Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom
Resumo:
We report experiments designed to test between Nash equilibria that are stable and unstable under learning. The “TASP” (Time Average of the Shapley Polygon) gives a precise prediction about what happens when there is divergence from equilibrium under fictitious play like learning processes. We use two 4 x 4 games each with a unique mixed Nash equilibrium; one is stable and one is unstable under learning. Both games are versions of Rock-Paper-Scissors with the addition of a fourth strategy, Dumb. Nash equilibrium places a weight of 1/2 on Dumb in both games, but the TASP places no weight on Dumb when the equilibrium is unstable. We also vary the level of monetary payoffs with higher payoffs predicted to increase instability. We find that the high payoff unstable treatment differs from the others. Frequency of Dumb is lower and play is further from Nash than in the other treatments. That is, we find support for the comparative statics prediction of learning theory, although the frequency of Dumb is substantially greater than zero in the unstable treatments.
Resumo:
Two logically distinct and permissive extensions of iterative weak dominance are introduced for games with possibly vector-valued payoffs. The first, iterative partial dominance, builds on an easy-to check condition but may lead to solutions that do not include any (generalized) Nash equilibria. However, the second and intuitively more demanding extension, iterative essential dominance, is shown to be an equilibrium refinement. The latter result includes Moulin’s (1979) classic theorem as a special case when all players’ payoffs are real-valued. Therefore, essential dominance solvability can be a useful solution concept for making sharper predictions in multicriteria games that feature a plethora of equilibria.