4 resultados para Best operator journey

em Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Block factor methods offer an attractive approach to forecasting with many predictors. These extract the information in these predictors into factors reflecting different blocks of variables (e.g. a price block, a housing block, a financial block, etc.). However, a forecasting model which simply includes all blocks as predictors risks being over-parameterized. Thus, it is desirable to use a methodology which allows for different parsimonious forecasting models to hold at different points in time. In this paper, we use dynamic model averaging and dynamic model selection to achieve this goal. These methods automatically alter the weights attached to different forecasting models as evidence comes in about which has forecast well in the recent past. In an empirical study involving forecasting output growth and inflation using 139 UK monthly time series variables, we find that the set of predictors changes substantially over time. Furthermore, our results show that dynamic model averaging and model selection can greatly improve forecast performance relative to traditional forecasting methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper uses a micro-founded DSGE model to compare second-best optimal environmental policy and the resulting allocation to first-best allocation. The focus is on the source and size of uncertainty, and how this affects optimal choices and the inferiority of second best vis-à-vis first best.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Block factor methods offer an attractive approach to forecasting with many predictors. These extract the information in these predictors into factors reflecting different blocks of variables (e.g. a price block, a housing block, a financial block, etc.). However, a forecasting model which simply includes all blocks as predictors risks being over-parameterized. Thus, it is desirable to use a methodology which allows for different parsimonious forecasting models to hold at different points in time. In this paper, we use dynamic model averaging and dynamic model selection to achieve this goal. These methods automatically alter the weights attached to different forecasting model as evidence comes in about which has forecast well in the recent past. In an empirical study involving forecasting output and inflation using 139 UK monthly time series variables, we find that the set of predictors changes substantially over time. Furthermore, our results show that dynamic model averaging and model selection can greatly improve forecast performance relative to traditional forecasting methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce attention games. Alternatives ranked by quality (producers, politicians, sexual partners...) desire to be chosen and compete for the imperfect attention of a chooser by investing in their own salience. We prove that if alternatives can control the attention they get, then ”the showiest is the best”: the equilibrium ordering of salience (weakly) reproduces the quality ranking and the best alternative is the one that gets picked most often. This result also holds under more general conditions. However, if those conditions fail, then even the worst alternative can be picked most often.