19 resultados para Aggregate Programming Spatial Computing Scafi Alchemist
em Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom
Resumo:
Using the framework of Desmet and Rossi-Hansberg (forthcoming), we present a model of spatial takeoff that is calibrated using spatially-disaggregated occupational data for England in c.1710. The model predicts changes in the spatial distribution of agricultural and manufacturing employment which match data for c.1817 and 1861. The model also matches a number of aggregate changes that characterise the first industrial revolution. Using counterfactual geographical distributions, we show that the initial concentration of productivity can matter for whether and when an industrial takeoff occurs. Subsidies to innovation in either sector can bring forward the date of takeoff while subsidies to the use of land by manufacturing firms can significantly delay a takeoff because it decreases spatial concentration of activity.
Resumo:
Using the framework of Desmet and Rossi-Hansberg (forthcoming), we present a model of spatial takeoff that is calibrated using spatially-disaggregated occupational data for England in c.1710. The model predicts changes in the spatial distribution of agricultural and manufacturing employment which match data for c.1817 and 1861. The model also matches a number of aggregate changes that characterise the first industrial revolution. Using counterfactual geographical distributions, we show that the initial concentration of productivity can matter for whether and when an industrial takeoff occurs. Subsidies to innovation in either sector can bring forward the date of takeoff while subsidies to the use of land by manufacturing firms can significantly delay a takeoff because it decreases spatial concentration of activity.
Resumo:
This paper contributes to the on-going empirical debate regarding the role of the RBC model and in particular of technology shocks in explaining aggregate fluctuations. To this end we estimate the model’s posterior density using Markov-Chain Monte-Carlo (MCMC) methods. Within this framework we extend Ireland’s (2001, 2004) hybrid estimation approach to allow for a vector autoregressive moving average (VARMA) process to describe the movements and co-movements of the model’s errors not explained by the basic RBC model. The results of marginal likelihood ratio tests reveal that the more general model of the errors significantly improves the model’s fit relative to the VAR and AR alternatives. Moreover, despite setting the RBC model a more difficult task under the VARMA specification, our analysis, based on forecast error and spectral decompositions, suggests that the RBC model is still capable of explaining a significant fraction of the observed variation in macroeconomic aggregates in the post-war U.S. economy.
Resumo:
Until recently, much effort has been devoted to the estimation of panel data regression models without adequate attention being paid to the drivers of diffusion and interaction across cross section and spatial units. We discuss some new methodologies in this emerging area and demonstrate their use in measurement and inferences on cross section and spatial interactions. Specifically, we highlight the important distinction between spatial dependence driven by unobserved common factors and those based on a spatial weights matrix. We argue that, purely factor driven models of spatial dependence may be somewhat inadequate because of their connection with the exchangeability assumption. Limitations and potential enhancements of the existing methods are discussed, and several directions for new research are highlighted.
Resumo:
We present a unique empirical analysis of the properties of the New Keynesian Phillips Curve using an international dataset of aggregate and disaggregate sectoral in ation. Our results from panel time-series estimation clearly indicate that sectoral heterogeneity has important consequences for aggregate in ation behaviour. Heterogeneity helps to explain the overestimation of in ation persistence and underestimation of the role of marginal costs in empirical investigations of the NKPC that use aggregate data. We nd that combining disaggregate information with heterogeneous-consistent estimation techniques helps to reconcile, to a large extent, the NKPC with the data.
Resumo:
In this paper we show that the inclusion of unemployment-tenure interaction variates in Mincer wage equations is subject to serious pitfalls. These variates were designed to test whether or not the sensitivity to the business cycle of a worker’s wage varies according to her tenure. We show that three canonical variates used in the literature - the minimum unemployment rate during a worker’s time at the firm(min u), the unemployment rate at the start of her tenure(Su) and the current unemployment rate interacted with a new hire dummy(δu) - can all be significant and "correctly" signed even when each worker in the firm receives the same wage, regardless of tenure (equal treatment). In matched data the problem can be resolved by the inclusion in the panel of firm-year interaction dummies. In unmatched data where this is not possible, we propose a solution for min u and Su based on Solon, Barsky and Parker’s(1994) two step method. This method is sub-optimal because it ignores a large amount of cross tenure variation in average wages and is only valid when the scaled covariances of firm wages and firm employment are acyclical. Unfortunately δu cannot be identified in unmatched data because a differential wage response to unemployment of new hires and incumbents will appear under both equal treatment and unequal treatment.
Resumo:
Spatial econometrics has been criticized by some economists because some model specifications have been driven by data-analytic considerations rather than having a firm foundation in economic theory. In particular this applies to the so-called W matrix, which is integral to the structure of endogenous and exogenous spatial lags, and to spatial error processes, and which are almost the sine qua non of spatial econometrics. Moreover it has been suggested that the significance of a spatially lagged dependent variable involving W may be misleading, since it may be simply picking up the effects of omitted spatially dependent variables, incorrectly suggesting the existence of a spillover mechanism. In this paper we review the theoretical and empirical rationale for network dependence and spatial externalities as embodied in spatially lagged variables, arguing that failing to acknowledge their presence at least leads to biased inference, can be a cause of inconsistent estimation, and leads to an incorrect understanding of true causal processes.
Resumo:
In this paper we examine whether variations in the level of public capital across Spain‟s Provinces affected productivity levels over the period 1996-2005. The analysis is motivated by contemporary urban economics theory, involving a production function for the competitive sector of the economy („industry‟) which includes the level of composite services derived from „service‟ firms under monopolistic competition. The outcome is potentially increasing returns to scale resulting from pecuniary externalities deriving from internal increasing returns in the monopolistic competition sector. We extend the production function by also making (log) labour efficiency a function of (log) total public capital stock and (log) human capital stock, leading to a simple and empirically tractable reduced form linking productivity level to density of employment, human capital and public capital stock. The model is further extended to include technological externalities or spillovers across provinces. Using panel data methodology, we find significant elasticities for total capital stock and for human capital stock, and a significant impact for employment density. The finding that the effect of public capital is significantly different from zero, indicating that it has a direct effect even after controlling for employment density, is contrary to some of the earlier research findings which leave the question of the impact of public capital unresolved.
Resumo:
In multilevel modelling, interest in modeling the nested structure of hierarchical data has been accompanied by increasing attention to different forms of spatial interactions across different levels of the hierarchy. Neglecting such interactions is likely to create problems of inference, which typically assumes independence. In this paper we review approaches to multilevel modelling with spatial effects, and attempt to connect the two literatures, discussing the advantages and limitations of various approaches.
Resumo:
Spatial heterogeneity, spatial dependence and spatial scale constitute key features of spatial analysis of housing markets. However, the common practice of modelling spatial dependence as being generated by spatial interactions through a known spatial weights matrix is often not satisfactory. While existing estimators of spatial weights matrices are based on repeat sales or panel data, this paper takes this approach to a cross-section setting. Specifically, based on an a priori definition of housing submarkets and the assumption of a multifactor model, we develop maximum likelihood methodology to estimate hedonic models that facilitate understanding of both spatial heterogeneity and spatial interactions. The methodology, based on statistical orthogonal factor analysis, is applied to the urban housing market of Aveiro, Portugal at two different spatial scales.
Resumo:
While estimates of models with spatial interaction are very sensitive to the choice of spatial weights, considerable uncertainty surrounds de nition of spatial weights in most studies with cross-section dependence. We show that, in the spatial error model the spatial weights matrix is only partially identi ed, and is fully identifi ed under the structural constraint of symmetry. For the spatial error model, we propose a new methodology for estimation of spatial weights under the assumption of symmetric spatial weights, with extensions to other important spatial models. The methodology is applied to regional housing markets in the UK, providing an estimated spatial weights matrix that generates several new hypotheses about the economic and socio-cultural drivers of spatial di¤usion in housing demand.
Resumo:
The Conservative Party emerged from the 2010 United Kingdom General Election as the largest single party, but their support was not geographically uniform. In this paper, we estimate a hierarchical Bayesian spatial probit model that tests for the presence of regional voting effects. This model allows for the estimation of individual region-specic effects on the probability of Conservative Party success, incorporating information on the spatial relationships between the regions of the mainland United Kingdom. After controlling for a range of important covariates, we find that these spatial relationships are significant and that our individual region-specic effects estimates provide additional evidence of North-South variations in Conservative Party support.
Resumo:
Employing an endogenous growth model with human capital, this paper explores how productivity shocks in the goods and human capital producing sectors contribute to explaining aggregate fluctuations in output, consumption, investment and hours. Given the importance of accounting for both the dynamics and the trends in the data not captured by the theoretical growth model, we introduce a vector error correction model (VECM) of the measurement errors and estimate the model’s posterior density function using Bayesian methods. To contextualize our findings with those in the literature, we also assess whether the endogenous growth model or the standard real business cycle model better explains the observed variation in these aggregates. In addressing these issues we contribute to both the methods of analysis and the ongoing debate regarding the effects of innovations to productivity on macroeconomic activity.
Resumo:
There is a long and detailed history of attempts to understand what causes crime. One of the most prominent strands of this literature has sought to better understand the relationship between economic conditions and crime. Following Becker (1968), the economic argument is that in an attempt to maintain consumption in the face of unemployment, people may resort to sources of illicit income. In a similar manner, we might expect ex–ante, that increases in the level of personal indebtedness would be likely to provide similar incentives to engage in criminality. In this paper we seek to understand the spatial pattern of property and theft crimes using a range of socioeconomic variables, including data on the level of personal indebtedness.
Resumo:
There is a long and detailed history of attempts to understand what causes crime. One of the most prominent strands of this literature has sought to better understand the relationship between economic conditions and crime. Following Becker (1968), the economic argument is that in an attempt to maintain consumption in the face of unemployment, people may resort to sources of illicit income. In a similar manner, we might expect ex–ante, that increases in the level of personal indebtedness would be likely to provide similar incentives to engage in criminality. In this paper we seek to understand the spatial pattern of property and theft crimes using a range of socioeconomic variables, including data on the level of personal indebtedness.