20 resultados para Uncertainty propagation
Resumo:
Using a large panel of unquoted UK over the period 2000-09, we examine the impact of firm-specific uncertainty on corporate failures. In this context we also distinguish between firms which are likely to be more or less dependant on bank finance as well as public and non-public companies. Our results document a significant effect of uncertainty on firm survival. This link is found to be more potent during the recent financial crisis compared with tranquil periods. We also uncover significant firm-level heterogeneity since the survival chance of bank-dependent and non-public firms are most affected by changes in uncertainty, especially during the recent global financial crisis.
Resumo:
The possibility of low-probability extreme natural events has reignited the debate over the optimal intensity and timing of climate policy. In this paper, we contribute to the literature by assessing the implications of low-probability extreme events on environmental policy in a continuous-time real options model with “tail risk”. In a nutshell, our results indicate the importance of tail risk and call for foresighted pre-emptive climate policies.
Resumo:
Using a large panel of unquoted UK firms over the period 2000-09, we examine the impact of firm-specific uncertainty on corporate failures. In this context we also distinguish between firms which are likely to be more or less dependent on bank finance as well as public and non-public companies. Our results document a significant effect of uncertainty on firm survival. This link is found to be more potent during the recent financial crisis compared with tranquil periods. We also uncover significant firm-level heterogeneity since the survival chances of bank-dependent and non-public firms are most affected by changes in uncertainty, especially during the recent global financial crisis.
Resumo:
This paper extends the Nelson-Siegel linear factor model by developing a flexible macro-finance framework for modeling and forecasting the term structure of US interest rates. Our approach is robust to parameter uncertainty and structural change, as we consider instabilities in parameters and volatilities, and our model averaging method allows for investors' model uncertainty over time. Our time-varying parameter Nelson-Siegel Dynamic Model Averaging (NS-DMA) predicts yields better than standard benchmarks and successfully captures plausible time-varying term premia in real time. The proposed model has significant in-sample and out-of-sample predictability for excess bond returns, and the predictability is of economic value.
Resumo:
Bayesian model averaging (BMA) methods are regularly used to deal with model uncertainty in regression models. This paper shows how to introduce Bayesian model averaging methods in quantile regressions, and allow for different predictors to affect different quantiles of the dependent variable. I show that quantile regression BMA methods can help reduce uncertainty regarding outcomes of future inflation by providing superior predictive densities compared to mean regression models with and without BMA.