21 resultados para Sparse time-varying VAR models
Resumo:
We use factor augmented vector autoregressive models with time-varying coefficients to construct a financial conditions index. The time-variation in the parameters allows for the weights attached to each financial variable in the index to evolve over time. Furthermore, we develop methods for dynamic model averaging or selection which allow the financial variables entering into the FCI to change over time. We discuss why such extensions of the existing literature are important and show them to be so in an empirical application involving a wide range of financial variables.
Resumo:
An expanding literature articulates the view that Taylor rules are helpful in predicting exchange rates. In a changing world however, Taylor rule parameters may be subject to structural instabilities, for example during the Global Financial Crisis. This paper forecasts exchange rates using such Taylor rules with Time Varying Parameters (TVP) estimated by Bayesian methods. In core out-of-sample results, we improve upon a random walk benchmark for at least half, and for as many as eight out of ten, of the currencies considered. This contrasts with a constant parameter Taylor rule model that yields a more limited improvement upon the benchmark. In further results, Purchasing Power Parity and Uncovered Interest Rate Parity TVP models beat a random walk benchmark, implying our methods have some generality in exchange rate prediction.
Resumo:
We develop tests of the proportional hazards assumption, with respect to a continuous covariate, in the presence of unobserved heterogeneity with unknown distribution at the individual observation level. The proposed tests are specially powerful against ordered alternatives useful for modeling non-proportional hazards situations. By contrast to the case when the heterogeneity distribution is known up to …nite dimensional parameters, the null hypothesis for the current problem is similar to a test for absence of covariate dependence. However, the two testing problems di¤er in the nature of relevant alternative hypotheses. We develop tests for both the problems against ordered alternatives. Small sample performance and an application to real data highlight the usefulness of the framework and methodology.
Resumo:
This paper evaluates the forward premium puzzle using the Euro exchange rate. Unlike previous studies, our analysis utilizes time-varying parameter methods and is based on two approaches for evaluation of the puzzle; the traditional approach analyzing the sensitivity of interest rate differentials to the forward premium, and the other looking into deviations from the covered interest rate parity (CIRP) condition. Then we provide evidence that the forward premium puzzle indeed became more prominent around the time of the recent crisis periods such as the Lehman Shock and the Euro crisis. This is also shown to be consistent with a deterioration in the CIRP.
Resumo:
We study the asymmetric and dynamic dependence between financial assets and demonstrate, from the perspective of risk management, the economic significance of dynamic copula models. First, we construct stock and currency portfolios sorted on different characteristics (ex ante beta, coskewness, cokurtosis and order flows), and find substantial evidence of dynamic evolution between the high beta (respectively, coskewness, cokurtosis and order flow) portfolios and the low beta (coskewness, cokurtosis and order flow) portfolios. Second, using three different dependence measures, we show the presence of asymmetric dependence between these characteristic-sorted portfolios. Third, we use a dynamic copula framework based on Creal et al. (2013) and Patton (2012) to forecast the portfolio Value-at-Risk of long-short (high minus low) equity and FX portfolios. We use several widely used univariate and multivariate VaR models for the purpose of comparison. Backtesting our methodology, we find that the asymmetric dynamic copula models provide more accurate forecasts, in general, and, in particular, perform much better during the recent financial crises, indicating the economic significance of incorporating dynamic and asymmetric dependence in risk management.
Resumo:
This paper extends the Nelson-Siegel linear factor model by developing a flexible macro-finance framework for modeling and forecasting the term structure of US interest rates. Our approach is robust to parameter uncertainty and structural change, as we consider instabilities in parameters and volatilities, and our model averaging method allows for investors' model uncertainty over time. Our time-varying parameter Nelson-Siegel Dynamic Model Averaging (NS-DMA) predicts yields better than standard benchmarks and successfully captures plausible time-varying term premia in real time. The proposed model has significant in-sample and out-of-sample predictability for excess bond returns, and the predictability is of economic value.