124 resultados para word processing
em Universit
Resumo:
Previous studies have demonstrated that a region in the left ventral occipito-temporal (LvOT) cortex is highly selective to the visual forms of written words and objects relative to closely matched visual stimuli. Here, we investigated why LvOT activation is not higher for reading than picture naming even though written words and pictures of objects have grossly different visual forms. To compare neuronal responses for words and pictures within the same LvOT area, we used functional magnetic resonance imaging adaptation and instructed participants to name target stimuli that followed briefly presented masked primes that were either presented in the same stimulus type as the target (word-word, picture-picture) or a different stimulus type (picture-word, word-picture). We found that activation throughout posterior and anterior parts of LvOT was reduced when the prime had the same name/response as the target irrespective of whether the prime-target relationship was within or between stimulus type. As posterior LvOT is a visual form processing area, and there was no visual form similarity between different stimulus types, we suggest that our results indicate automatic top-down influences from pictures to words and words to pictures. This novel perspective motivates further investigation of the functional properties of this intriguing region.
Resumo:
The reliance in experimental psychology on testing undergraduate populations with relatively little life experience, and/or ambiguously valenced stimuli with varying degrees of self-relevance, may have contributed to inconsistent findings in the literature on the valence hypothesis. To control for these potential limitations, the current study assessed lateralised lexical decisions for positive and negative attachment words in 40 middle-aged male and female participants. Self-relevance was manipulated in two ways: by testing currently married compared with previously married individuals and by assessing self-relevance ratings individually for each word. Results replicated a left hemisphere advantage for lexical decisions and a processing advantage of emotional over neutral words but did not support the valence hypothesis. Positive attachment words yielded a processing advantage over neutral words in the right hemisphere, while emotional words (irrespective of valence) yielded a processing advantage over neutral words in the left hemisphere. Both self-relevance manipulations were unrelated to lateralised performance. The role of participant sex and age in emotion processing are discussed as potential modulators of the present findings.
Resumo:
Traditionally, the ventral occipito-temporal (vOT) area, but not the superior parietal lobules (SPLs), is thought as belonging to the neural system of visual word recognition. However, some dyslexic children who exhibit a visual attention span disorder - i.e. poor multi-element parallel processing - further show reduced SPLs activation when engaged in visual multi-element categorization tasks. We investigated whether these parietal regions further contribute to letter-identity processing within strings. Adult skilled readers and dyslexic participants with a visual attention span disorder were administered a letter-string comparison task under fMRI. Dyslexic adults were less accurate than skilled readers to detect letter identity substitutions within strings. In skilled readers, letter identity differs related to enhanced activation of the left vOT. However, specific neural responses were further found in the superior and inferior parietal regions, including the SPLs bilaterally. Two brain regions that are specifically related to substituted letter detection, the left SPL and the left vOT, were less activated in dyslexic participants. These findings suggest that the left SPL, like the left vOT, may contribute to letter string processing.
Resumo:
Although functional neuroimaging studies have supported the distinction between explicit and implicit forms of memory, few have matched explicit and implicit tests closely, and most of these tested perceptual rather than conceptual implicit memory. We compared event-related fMRI responses during an intentional test, in which a group of participants used a cue word to recall its associate from a prior study phase, with those in an incidental test, in which a different group of participants used the same cue to produce the first associate that came to mind. Both semantic relative to phonemic processing at study, and emotional relative to neutral word pairs, increased target completions in the intentional test, but not in the incidental test, suggesting that behavioral performance in the incidental test was not contaminated by voluntary explicit retrieval. We isolated the neural correlates of successful retrieval by contrasting fMRI responses to studied versus unstudied cues for which the equivalent "target" associate was produced. By comparing the difference in this repetition-related contrast across the intentional and incidental tests, we could identify the correlates of voluntary explicit retrieval. This contrast revealed increased bilateral hippocampal responses in the intentional test, but decreased hippocampal responses in the incidental test. A similar pattern in the bilateral amygdale was further modulated by the emotionality of the word pairs, although surprisingly only in the incidental test. Parietal regions, however, showed increased repetition-related responses in both tests. These results suggest that the neural correlates of successful voluntary explicit memory differ in directionality, even if not in location, from the neural correlates of successful involuntary implicit (or explicit) memory, even when the incidental test taps conceptual processes.
Resumo:
The current state of empirical investigations refers to consciousness as an all-or-none phenomenon. However, a recent theoretical account opens up this perspective by proposing a partial level (between nil and full) of conscious perception. In the well-studied case of single-word reading, short-lived exposure can trigger incomplete word-form recognition wherein letters fall short of forming a whole word in one's conscious perception thereby hindering word-meaning access and report. Hence, the processing from incomplete to complete word-form recognition straightforwardly mirrors a transition from partial to full-blown consciousness. We therefore hypothesized that this putative functional bottleneck to consciousness (i.e. the perceptual boundary between partial and full conscious perception) would emerge at a major key hub region for word-form recognition during reading, namely the left occipito-temporal junction. We applied a real-time staircase procedure and titrated subjective reports at the threshold between partial (letters) and full (whole word) conscious perception. This experimental approach allowed us to collect trials with identical physical stimulation, yet reflecting distinct perceptual experience levels. Oscillatory brain activity was monitored with magnetoencephalography and revealed that the transition from partial-to-full word-form perception was accompanied by alpha-band (7-11 Hz) power suppression in the posterior left occipito-temporal cortex. This modulation of rhythmic activity extended anteriorly towards the visual word form area (VWFA), a region whose selectivity for word-forms in perception is highly debated. The current findings provide electrophysiological evidence for a functional bottleneck to consciousness thereby empirically instantiating a recently proposed partial perspective on consciousness. Moreover, the findings provide an entirely new outlook on the functioning of the VWFA as a late bottleneck to full-blown conscious word-form perception.
Resumo:
Les déficits auditifs spatiaux se produisent fréquemment après une lésion hémisphérique ; un précédent case report suggérait que la capacité explicite à reconnaître des positions sonores, comme dans la localisation des sons, peut être atteinte alors que l'utilisation implicite d'indices sonores pour la reconnaissance d'objets sonores dans un environnement bruyant reste préservée. En testant systématiquement des patients avec lésion hémisphérique inaugurale, nous avons montré que (1) l'utilisation explicite et/ou implicite des indices sonores peut être perturbée ; (2) la dissociation entre l'atteinte de l'utilisation explicite des indices sonores versus une préservation de l'utilisation implicite de ces indices est assez fréquente ; et (3) différents types de déficits dans la localisation des sons peuvent être associés avec une utilisation implicite préservée de ces indices sonores. Conceptuellement, la dissociation entre l'utilisation explicite et implicite de ces indices sonores peut illustrer la dichotomie des deux voies du système auditif. Nos résultats parlent en faveur d'une évaluation systématique des fonctions auditives spatiales dans un contexte clinique, surtout quand l'adaptation à un environnement sonore est en jeu. De plus, des études systématiques sont nécessaires afin de mettre en lien les troubles de l'utilisation explicite versus implicite de ces indices sonores avec les difficultés à effectuer les activités de la vie quotidienne, afin d'élaborer des stratégies de réhabilitation appropriées et afin de s'assurer jusqu'à quel point l'utilisation explicite et implicite des indices spatiaux peut être rééduquée à la suite d'un dommage cérébral.
Resumo:
When speech is degraded, word report is higher for semantically coherent sentences (e.g., her new skirt was made of denim) than for anomalous sentences (e.g., her good slope was done in carrot). Such increased intelligibility is often described as resulting from "top-down" processes, reflecting an assumption that higher-level (semantic) neural processes support lower-level (perceptual) mechanisms. We used time-resolved sparse fMRI to test for top-down neural mechanisms, measuring activity while participants heard coherent and anomalous sentences presented in speech envelope/spectrum noise at varying signal-to-noise ratios (SNR). The timing of BOLD responses to more intelligible speech provides evidence of hierarchical organization, with earlier responses in peri-auditory regions of the posterior superior temporal gyrus than in more distant temporal and frontal regions. Despite Sentence content × SNR interactions in the superior temporal gyrus, prefrontal regions respond after auditory/perceptual regions. Although we cannot rule out top-down effects, this pattern is more compatible with a purely feedforward or bottom-up account, in which the results of lower-level perceptual processing are passed to inferior frontal regions. Behavioral and neural evidence that sentence content influences perception of degraded speech does not necessarily imply "top-down" neural processes.
Resumo:
The proprotein convertases (PCs) are a family of nine mammalian enzymes that play key roles in the maintenance of cell homeostasis by activating or inactivating proteins via limited proteolysis under temporal and spatial control. A wide range of pathogens, including major human pathogenic viruses can hijack cellular PCs for their own purposes. In particular, productive infection with many enveloped viruses critically depends on the processing of their fusion-active viral envelope glycoproteins by cellular PCs. Based on their crucial role in virus-host interaction, PCs can be important determinants for viral pathogenesis and represent promising targets of therapeutic antiviral intervention. In the present review we will cover basic aspects and recent developments of PC-mediated maturation of viral envelope glycoproteins of selected medically important viruses. The molecular mechanisms underlying the recognition of PCs by viral glycoproteins will be described, including recent findings demonstrating differential PC-recognition of viral and cellular substrates. We will further discuss a possible scenario how viruses during co-evolution with their hosts adapted their glycoproteins to modulate the activity of cellular PCs for their own benefit and discuss the consequences for virus-host interaction and pathogenesis. Particular attention will be given to past and current efforts to evaluate cellular PCs as targets for antiviral therapeutic intervention, with emphasis on emerging highly pathogenic viruses for which no efficacious drugs or vaccines are currently available.
Resumo:
PRINCIPLES: Patients with carotid artery stenosis (CAS) are at risk of ipsilateral stroke and chronic compromise of cerebral blood flow. It is under debate whether the hypo-perfusion or embolism in CAS is directly related to cognitive impairment. Alternatively, CAS may be a marker for underlying risk factors, which themselves influence cognition. We aimed to determine cognitive performance level and the emotional state of patients with CAS. We hypo-thesised that patients with high grade stenosis, bilateral stenosis, symptomatic patients and/or those with relevant risk factors would suffer impairment of their cognitive performance and emotional state. METHODS: A total of 68 patients with CAS of ≥70% were included in a prospective exploratory study design. All patients underwent structured assessment of executive functions, language, verbal and visual memory, motor speed, anxiety and depression. RESULTS: Significantly more patients with CAS showed cognitive impairments (executive functions, word production, verbal and visual memory, motor speed) and anxiety than expected in a normative sample. Bilateral and symptomatic stenosis was associated with slower processing speed. Cognitive performance and anxiety level were not influenced by the side and the degree of stenosis or the presence of collaterals. Factors associated with less co-gnitive impairment included higher education level, female gender, ambidexterity and treated hypercholesterolemia. CONCLUSIONS: Cognitive impairment and increased level of anxiety are frequent in patients with carotid stenosis. The lack of a correlation between cognitive functioning and degree of stenosis or the presence of collaterals, challenges the view that CAS per se leads to cognitive impairment.
Resumo:
Interaural intensity and time differences (IID and ITD) are two binaural auditory cues for localizing sounds in space. This study investigated the spatio-temporal brain mechanisms for processing and integrating IID and ITD cues in humans. Auditory-evoked potentials were recorded, while subjects passively listened to noise bursts lateralized with IID, ITD or both cues simultaneously, as well as a more frequent centrally presented noise. In a separate psychophysical experiment, subjects actively discriminated lateralized from centrally presented stimuli. IID and ITD cues elicited different electric field topographies starting at approximately 75 ms post-stimulus onset, indicative of the engagement of distinct cortical networks. By contrast, no performance differences were observed between IID and ITD cues during the psychophysical experiment. Subjects did, however, respond significantly faster and more accurately when both cues were presented simultaneously. This performance facilitation exceeded predictions from probability summation, suggestive of interactions in neural processing of IID and ITD cues. Supra-additive neural response interactions as well as topographic modulations were indeed observed approximately 200 ms post-stimulus for the comparison of responses to the simultaneous presentation of both cues with the mean of those to separate IID and ITD cues. Source estimations revealed differential processing of IID and ITD cues initially within superior temporal cortices and also at later stages within temporo-parietal and inferior frontal cortices. Differences were principally in terms of hemispheric lateralization. The collective psychophysical and electrophysiological results support the hypothesis that IID and ITD cues are processed by distinct, but interacting, cortical networks that can in turn facilitate auditory localization.
Resumo:
While the dynamics of lexical-semantic and lexical-phonological encoding in word production have been investigated in several event-related potential (ERP) studies, the estimated time course of phonological-phonetic encoding is the result of rather indirect evidence. We investigated the dynamics of phonological-phonetic encoding combining ERP analyses covering the entire encoding process in picture naming and word reading tasks by comparing ERP modulations in eight brain-damaged speakers presenting impaired phonological-phonetic encoding relative to 16 healthy controls. ERPs diverged between groups in terms of local waveform amplitude and global topography at ∼400ms after stimulus onset in the picture naming task and at ∼320-350ms in word reading and sustained until 100ms before articulation onset. These divergences appeared in later time windows than those found in patients with underlying lexical-semantic and lexical-phonological impairment in previous studies, providing evidence that phonological-phonetic encoding is engaged around 400ms in picture naming and around 330ms in word reading.
Resumo:
Differences in personality factors between individuals may manifest themselves with different patterns of neural activity while individuals process stimuli with emotional content. We attempted to verify this hypothesis by investigating emotional susceptibility (ES), a specific emotional trait of the human personality defined as the tendency to "experience feelings of discomfort, helplessness, inadequacy and vulnerability" after exposure to stimuli with emotional valence. By administering a questionnaire evaluating the individuals' ES, we selected two groups of participants with high and low ES respectively. Then, we used functional magnetic resonance imaging to investigate differences between the groups in the neural activity involved while they were processing emotional stimuli in an explicit (focusing on the content of the stimuli) or an incidental (focusing on spatial features of the stimuli, irrespectively of their content) way. The results showed a selective difference in brain activity between groups only in the explicit processing of the emotional stimuli: bilateral activity of the anterior insula was present in subjects with high ES but not in subjects with low ES. This difference in neural activity within the anterior insula proved to be purely functional since no brain morphological differences were found between groups, as assessed by a voxel-based morphometry analysis. Although the role of the anterior insula in the processing of contexts perceived as emotionally salient is well established, the present study provides the first evidence of a modulation of the insular activity depending on the individuals' ES trait of personality.