179 resultados para Set-Valued Functions
em Universit
Resumo:
Background: The variety of DNA microarray formats and datasets presently available offers an unprecedented opportunity to perform insightful comparisons of heterogeneous data. Cross-species studies, in particular, have the power of identifying conserved, functionally important molecular processes. Validation of discoveries can now often be performed in readily available public data which frequently requires cross-platform studies.Cross-platform and cross-species analyses require matching probes on different microarray formats. This can be achieved using the information in microarray annotations and additional molecular biology databases, such as orthology databases. Although annotations and other biological information are stored using modern database models ( e. g. relational), they are very often distributed and shared as tables in text files, i.e. flat file databases. This common flat database format thus provides a simple and robust solution to flexibly integrate various sources of information and a basis for the combined analysis of heterogeneous gene expression profiles.Results: We provide annotationTools, a Bioconductor-compliant R package to annotate microarray experiments and integrate heterogeneous gene expression profiles using annotation and other molecular biology information available as flat file databases. First, annotationTools contains a specialized set of functions for mining this widely used database format in a systematic manner. It thus offers a straightforward solution for annotating microarray experiments. Second, building on these basic functions and relying on the combination of information from several databases, it provides tools to easily perform cross-species analyses of gene expression data.Here, we present two example applications of annotationTools that are of direct relevance for the analysis of heterogeneous gene expression profiles, namely a cross-platform mapping of probes and a cross-species mapping of orthologous probes using different orthology databases. We also show how to perform an explorative comparison of disease-related transcriptional changes in human patients and in a genetic mouse model.Conclusion: The R package annotationTools provides a simple solution to handle microarray annotation and orthology tables, as well as other flat molecular biology databases. Thereby, it allows easy integration and analysis of heterogeneous microarray experiments across different technological platforms or species.
Resumo:
Gene-on-gene regulations are key components of every living organism. Dynamical abstract models of genetic regulatory networks help explain the genome's evolvability and robustness. These properties can be attributed to the structural topology of the graph formed by genes, as vertices, and regulatory interactions, as edges. Moreover, the actual gene interaction of each gene is believed to play a key role in the stability of the structure. With advances in biology, some effort was deployed to develop update functions in Boolean models that include recent knowledge. We combine real-life gene interaction networks with novel update functions in a Boolean model. We use two sub-networks of biological organisms, the yeast cell-cycle and the mouse embryonic stem cell, as topological support for our system. On these structures, we substitute the original random update functions by a novel threshold-based dynamic function in which the promoting and repressing effect of each interaction is considered. We use a third real-life regulatory network, along with its inferred Boolean update functions to validate the proposed update function. Results of this validation hint to increased biological plausibility of the threshold-based function. To investigate the dynamical behavior of this new model, we visualized the phase transition between order and chaos into the critical regime using Derrida plots. We complement the qualitative nature of Derrida plots with an alternative measure, the criticality distance, that also allows to discriminate between regimes in a quantitative way. Simulation on both real-life genetic regulatory networks show that there exists a set of parameters that allows the systems to operate in the critical region. This new model includes experimentally derived biological information and recent discoveries, which makes it potentially useful to guide experimental research. The update function confers additional realism to the model, while reducing the complexity and solution space, thus making it easier to investigate.
Resumo:
Retroposed genes (retrogenes) originate via the reverse transcription of mature messenger RNAs from parental source genes and are therefore usually devoid of introns. Here, we characterize a particular set of mammalian retrogenes that acquired introns upon their emergence and thus represent rare cases of intron gain in mammals. We find that although a few retrogenes evolved introns in their coding or 3' untranslated regions (untranslated region, UTR), most introns originated together with untranslated exons in the 5' flanking regions of the retrogene insertion site. They emerged either de novo or through fusions with 5' UTR exons of host genes into which the retrogenes inserted. Generally, retrogenes with introns display high transcription levels and show broader spatial expression patterns than other retrogenes. Our experimental expression analyses of individual intron-containing retrogenes show that 5' UTR introns may indeed promote higher expression levels, at least in part through encoded regulatory elements. By contrast, 3' UTR introns may lead to downregulation of expression levels via nonsense-mediated decay mechanisms. Notably, the majority of retrogenes with introns in their 5' flanks depend on distant, sometimes bidirectional CpG dinucleotide-enriched promoters for their expression that may be recruited from other genes in the genomic vicinity. We thus propose a scenario where the acquisition of new 5' exon-intron structures was directly linked to the recruitment of distant promoters by these retrogenes, a process potentially facilitated by the presence of proto-splice sites in the genomic vicinity of retrogene insertion sites. Thus, the primary role and selective benefit of new 5' introns (and UTR exons) was probably initially to span the often substantial distances to potent CpG promoters driving retrogene transcription. Later in evolution, these introns then obtained additional regulatory roles in fine tuning retrogene expression levels. Our study provides novel insights regarding mechanisms underlying the origin of new introns, the evolutionary relevance of intron gain, and the origin of new gene promoters.
Resumo:
Explicitly correlated coupled-cluster calculations of intermolecular interaction energies for the S22 benchmark set of Jurecka, Sponer, Cerny, and Hobza (Chem. Phys. Phys. Chem. 2006, 8, 1985) are presented. Results obtained with the recently proposed CCSD(T)-F12a method and augmented double-zeta basis sets are found to be in very close agreement with basis set extrapolated conventional CCSD(T) results. Furthermore, we propose a dispersion-weighted MP2 (DW-MP2) approximation that combines the good accuracy of MP2 for complexes with predominately electrostatic bonding and SCS-MP2 for dispersion-dominated ones. The MP2-F12 and SCS-MP2-F12 correlation energies are weighted by a switching function that depends on the relative HF and correlation contributions to the interaction energy. For the S22 set, this yields a mean absolute deviation of 0.2 kcal/mol from the CCSD(T)-F12a results. The method, which allows obtaining accurate results at low cost, is also tested for a number of dimers that are not in the training set.
Resumo:
Modeling concentration-response function became extremely popular in ecotoxicology during the last decade. Indeed, modeling allows determining the total response pattern of a given substance. However, reliable modeling is consuming in term of data, which is in contradiction with the current trend in ecotoxicology, which aims to reduce, for cost and ethical reasons, the number of data produced during an experiment. It is therefore crucial to determine experimental design in a cost-effective manner. In this paper, we propose to use the theory of locally D-optimal designs to determine the set of concentrations to be tested so that the parameters of the concentration-response function can be estimated with high precision. We illustrated this approach by determining the locally D-optimal designs to estimate the toxicity of the herbicide dinoseb on daphnids and algae. The results show that the number of concentrations to be tested is often equal to the number of parameters and often related to the their meaning, i.e. they are located close to the parameters. Furthermore, the results show that the locally D-optimal design often has the minimal number of support points and is not much sensitive to small changes in nominal values of the parameters. In order to reduce the experimental cost and the use of test organisms, especially in case of long-term studies, reliable nominal values may therefore be fixed based on prior knowledge and literature research instead of on preliminary experiments
Resumo:
In rats, neonatal treatment with monosodium L-glutamate (MSG) induces several metabolic and neuroendocrine abnormalities, which result in hyperadiposity. No data exist, however, regarding neuroendocrine, immune and metabolic responses to acute endotoxemia in the MSG-damaged rat. We studied the consequences of MSG treatment during the acute phase response of inflammatory stress. Neonatal male rats were treated with MSG or vehicle (controls, CTR) and studied at age 90 days. Pituitary, adrenal, adipo-insular axis, immune, metabolic and gonadal functions were explored before and up to 5 h after single sub-lethal i.p. injection of bacterial lipopolysaccharide (LPS; 150 microg/kg). Our results showed that, during the acute phase response of inflammatory stress in MSG rats: (1) the corticotrope-adrenal, leptin, insulin and triglyceride responses were higher than in CTR rats, (2) pro-inflammatory (TNFalpha) cytokine response was impaired and anti-inflammatory (IL-10) cytokine response was normal, and (3) changes in peripheral estradiol and testosterone levels after LPS varied as in CTR rats. These data indicate that metabolic and neroendocrine-immune functions are altered in MSG-damaged rats. Our study also suggests that the enhanced corticotrope-corticoadrenal activity in MSG animals could be responsible, at least in part, for the immune and metabolic derangements characterizing hypothalamic obesity.
Resumo:
We have used massively parallel signature sequencing (MPSS) to sample the transcriptomes of 32 normal human tissues to an unprecedented depth, thus documenting the patterns of expression of almost 20,000 genes with high sensitivity and specificity. The data confirm the widely held belief that differences in gene expression between cell and tissue types are largely determined by transcripts derived from a limited number of tissue-specific genes, rather than by combinations of more promiscuously expressed genes. Expression of a little more than half of all known human genes seems to account for both the common requirements and the specific functions of the tissues sampled. A classification of tissues based on patterns of gene expression largely reproduces classifications based on anatomical and biochemical properties. The unbiased sampling of the human transcriptome achieved by MPSS supports the idea that most human genes have been mapped, if not functionally characterized. This data set should prove useful for the identification of tissue-specific genes, for the study of global changes induced by pathological conditions, and for the definition of a minimal set of genes necessary for basic cell maintenance. The data are available on the Web at http://mpss.licr.org and http://sgb.lynxgen.com.
Resumo:
Choline supplementation improving memory functions in rodents is assumed to increase the synthesis and release of acetylcholine in the brain. We have found that a combined pre- and postnatal supplementation results in long-lasting facilitation of spatial memory in juvenile rats when training was conducted in presence of a local salient cue. The present work was aimed at analysing the effects of peri- and postnatal choline supplementation on spatial abilities of naive adult rats. Rats given a perinatal choline supplementation were trained in various cued procedures of the Morris navigation task when aged 5 months. The treatment had a specific effect of reducing the escape latency of the rats when the platform was at a fixed position in space and surrounded by a suspended cue. This effect was associated with an increased spatial bias when the cue and platform were removed. In this condition, the control rats showed impaired spatial discrimination following the removal of the target cue, most likely due to an overshadowing of the distant environmental cues. This impairment was not observed in the treated rats. Further training with the suspended cue at unpredictable places in the pool revealed longer escape latencies in the control than in the treated rats suggesting that this procedure induced a selective perturbation of the normal but not of the treated rats. A special probe trial with the cue at an irrelevant position and no escape platform revealed a significant bias of the control rats toward the cue and of the treated rats toward the uncued spatial escape position. This behavioural dissociation suggests that a salient cue associated with the target induces an alternative "non spatial" guidance strategy in normal rats, with the risk of overshadowing of the more distant spatial cues. In this condition, the choline supplementation facilities a spatial reliance on the cue, that is an overall facilitation of learning a set of spatial relations between several visual cues. As a consequence, the improved escape in presence of the cue is associated with a stronger memory of the spatial position following disappearance of the cue. This and previous observations suggest that a specific spatial attention process relies on the buffering of highly salient visual cues.to facilitate integration of their relative position in the environment.
Resumo:
The majority of diseases in the retina are caused by genetic mutations affecting the development and function of photoreceptor cells. The transcriptional networks directing these processes are regulated by genes such as nuclear hormone receptors. The nuclear hormone receptor gene Rev-erb alpha/Nr1d1 has been widely studied for its role in the circadian cycle and cell metabolism, however its role in the retina is unknown. In order to understand the role of Rev-erb alpha/Nr1d1 in the retina, we evaluated the effects of loss of Nr1d1 to the developing retina and its co-regulation with the photoreceptor-specific nuclear receptor gene Nr2e3 in the developing and mature retina. Knock-down of Nr1d1 expression in the developing retina results in pan-retinal spotting and reduced retinal function by electroretinogram. Our studies show that NR1D1 protein is co-expressed with NR2E3 in the outer neuroblastic layer of the developing mouse retina. In the adult retina, NR1D1 is expressed in the ganglion cell layer and is co-expressed with NR2E3 in the outer nuclear layer, within rods and cones. Several genes co-targeted by NR2E3 and NR1D1 were identified that include: Nr2c1, Recoverin, Rgr, Rarres2, Pde8a, and Nupr1. We examined the cyclic expression of Nr1d1 and Nr2e3 over a twenty-four hour period and observed that both nuclear receptors cycle in a similar manner. Taken together, these studies reveal a novel role for Nr1d1, in conjunction with its cofactor Nr2e3, in regulating transcriptional networks critical for photoreceptor development and function.
Resumo:
Cerebral microangiopathy (CMA) has been associated with executive dysfunction and fronto-parietal neural network disruption. Advances in magnetic resonance imaging allow more detailed analyses of gray (e.g., voxel-based morphometry-VBM) and white matter (e.g., diffusion tensor imaging-DTI) than traditional visual rating scales. The current study investigated patients with early CMA and healthy control subjects with all three approaches. Neuropsychological assessment focused on executive functions, the cognitive domain most discussed in CMA. The DTI and age-related white matter changes rating scales revealed convergent results showing widespread white matter changes in early CMA. Correlations were found in frontal and parietal areas exclusively with speeded, but not with speed-corrected executive measures. The VBM analyses showed reduced gray matter in frontal areas. All three approaches confirmed the hypothesized fronto-parietal network disruption in early CMA. Innovative methods (DTI) converged with results from conventional methods (visual rating) while allowing greater spatial and tissue accuracy. They are thus valid additions to the analysis of neural correlates of cognitive dysfunction. We found a clear distinction between speeded and nonspeeded executive measures in relationship to imaging parameters. Cognitive slowing is related to disease severity in early CMA and therefore important for early diagnostics.
Resumo:
Fatty acid degradation in most organisms occurs primarily via the beta-oxidation cycle. In mammals, beta-oxidation occurs in both mitochondria and peroxisomes, whereas plants and most fungi harbor the beta-oxidation cycle only in the peroxisomes. Although several of the enzymes participating in this pathway in both organelles are similar, some distinct physiological roles have been uncovered. Recent advances in the structural elucidation of numerous mammalian and yeast enzymes involved in beta-oxidation have shed light on the basis of the substrate specificity for several of them. Of particular interest is the structural organization and function of the type 1 and 2 multifunctional enzyme (MFE-1 and MFE-2), two enzymes evolutionarily distant yet catalyzing the same overall enzymatic reactions but via opposite stereochemistry. New data on the physiological roles of the various enzymes participating in beta-oxidation have been gathered through the analysis of knockout mutants in plants, yeast and animals, as well as by the use of polyhydroxyalkanoate synthesis from beta-oxidation intermediates as a tool to study carbon flux through the pathway. In plants, both forward and reverse genetics performed on the model plant Arabidopsis thaliana have revealed novel roles for beta-oxidation in the germination process that is independent of the generation of carbohydrates for growth, as well as in embryo and flower development, and the generation of the phytohormone indole-3-acetic acid and the signal molecule jasmonic acid.
Resumo:
Controlling external compound entrance is essential for plant survival. To set up an efficient and selective sorting of nutrients, free diffusion via the apoplast in vascular plants is blocked at the level of the endodermis. Although we have learned a lot about endodermal specification in the last years, information regarding its differentiation is still very limited. A differentiated endodermal cell can be defined by the presence of the "Casparian strip" (CS), a cell wall modification described first by Robert Caspary in 1865. While the anatomical description of CS in many vascular plants has been very detailed, we still lack molecular information about the establishment of the Casparian strips and their actual function in roots. The recent isolation of a novel protein family, the CASPs, that localizes precisely to a domain of the plasma membrane underneath the CS represents an excellent point of entry to explore CS function and formation. In addition, it has been shown that the endodermis contains transporters that are localized to either the central (stele-facing) or peripheral (soil-facing) plasma membranes. These features suggest that the endodermis functions as a polar plant epithelium.
Resumo:
INTRODUCTION/OBJECTIVES: Detection rates for adenoma and early colorectal cancer (CRC) are insufficient due to low compliance towards invasive screening procedures, like colonoscopy.Available non-invasive screening tests have unfortunately low sensitivity and specificity performances.Therefore, there is a large unmet need calling for a cost-effective, reliable and non-invasive test to screen for early neoplastic and pre-neoplastic lesions AIMS & Methods: The objective is to develop a screening test able to detect early CRCs and adenomas.This test is based on a nucleic acids multi-gene assay performed on peripheral blood mononuclear cells (PBMCs).A colonoscopy-controlled feasibility study was conducted on 179 subjects.The first 92 subjects was used as training set to generate a statistical significant signature.Colonoscopy revealed 21 subjects with CRC,30 with adenoma bigger than 1 cm and 41 with no neoplastic or inflammatory lesions.The second group of 48 subjects (controls, CRC and polyps) was used as a test set and will be kept blinded for the entire data analysis.To determine the organ and disease specificity 38 subjects were used:24 with inflammatory bowel disease (IBD),14 with other cancers than CRC (OC).Blood samples were taken from each patient the day of the colonoscopy and PBMCs were purified. Total RNA was extracted following standard procedures.Multiplex RT-qPCR was applied on 92 different candidate biomarkers.Different univariate and multivariate statistical methods were applied on these candidates and among them 60 biomarkers with significant p-values (<0.01) were selected.These biomarkers are involved in several different biological functions as cellular movement,cell signaling and interaction,tissue and cellular development,cancer and cell growth and proliferation.Two distinct biomarker signatures are used to separate patients without lesion from those with cancer or with adenoma, named COLOX CRC and COLOX POL respectively.COLOX performances were validated using random resampling method, bootstrap. RESULTS: COLOX CRC and POL tests successfully separate patients without lesions from those with CRC (Se 67%,Sp 93%,AUC 0.87) and from those with adenoma bigger than 1cm (Se 63%,Sp 83%,AUC 0.77),respectively. 6/24 patients in the IBD group and 1/14 patients in the OC group have a positive COLOX CRC CONCLUSION: The two COLOX tests demonstrated a high sensitivity and specificity to detect the presence of CRCs and adenomas bigger than 1 cm.A prospective, multicenter, pivotal study is underway in order to confirm these promising results in a larger cohort.
Resumo:
TNF family ligands and receptors fulfill a number of functions, mainly in the immune system. For example, the ligands BAFF and APRIL control growth and survival of mature Β cells at various stages of differentiation. TNF family ligands usually form homotrimers, but heteromers have also been described for lymphotoxin α1β2 and for BAFF and APRIL. Interestingly, twenty BAFF homotrimers can assemble into virus-like particles coined BAFF 60-mer, which are superior to BAFF 3-mer regarding their ability to signal in primary Β cells. A screen was performed in 293T cells, by co-transfecting differently tagged ligands, to identify six novel heteromers. The specificity of these novel heteromers, however, did not correspond to that of orphan receptors in the TNFR family. Little is known about heteromers of BAFF and APRIL, in particular their receptor-binding specificity and their ability to signal. A method to produce and purify heteromers of defined stoechiometry was developed, and the resulting reagents were used to demonstrate that BAFF2APRIL, like BAFF, binds to all BAFF receptors - namely BAFFR, TACI and Β CM A -, while APRIL2BAFF and APRIL only binds to TACI and BCMA. Heteromers could signal via their cognate receptors, sometimes as potently and sometimes less potently than homomers, depending on the receptors. A promising system to measure the activity of single-chain homo- and heteromers in vivo was set up: it measures mature Β cell rescue upon administration of single-chain ligands into BAFF-ko mice. To tackle the question of the physiological importance of BAFF 60-mer, a point mutation that prevents assembly of mouse BAFF into 60-mer while retaining its ability to form trimers was identified. This mutation (E247K) was introduced by homologous recombination into mouse embryonic stem cells that are now being used to generate knock-in mice. Results obtained in this work will help to better understand the role of various BAFF and APRIL forms that are elevated in a several autoimmune diseases. - Les ligands et récepteurs de la famille du TNF joue un rôle prédominant dans le système immunitaire. Par exemple, les ligands BAFF et APRIL contrôlent la croissance et la survie des cellules Β matures à différents stades de différenciation. Ces ligands existent souvent sous forme d'homotrimères (3-mer), bien que des héteromères aient été décrits pour la lymphotoxine α1β2 et pour BAFF et APRIL. Dans le cas de BAFF, vingt trimères peuvent, telle une particule virale, s'assembler en 60-mer qui surpasse le 3-mer pour signaler dans des cellules Β primaires. Un crible effectué dans des cellules 293T, par co-transfection de ligands différemment marqués, a permis d'identifier six nouveaux heteromères dont la spécificité n'a, hélas, pas correspondu à celle d'un récepteur orphelin de la famille du TNFR. Les connaissances sur la spécificité de liaison aux récepteurs et la capacité à signaler des heteromères de BAFF et d'APRIL sont fragmentaires. Une méthode pour produire et purifier des heteromères "simple chaîne" de stoechiométrie déterminée a été mise au point, et les réactifs ainsi obtenus utilisés pour démontrer que BAFF2APRIL, comme BAFF, lie tous les récepteurs de BAFF - c'est-à-dire BAFFR, TACI et BCMA -, alors qu'APRIL2BAFF et APRIL ne lient que TACI et BCMA. Les héteromères peuvent transmettre des signaux, parfois aussi bien et parfois plus faiblement que les homomères, selon les récepteurs. Un système prometteur pour mesurer l'activité des ligands simple chaîne in vivo a été mis au point. Il mesure la réapparition de cellules Β matures dans des souris déficientes pour BAFF après administration des ligands. Pour s'attaquer à la question de l'importance physiologique du 60-mer de BAFF, ime mutation empêchant l'assemblage en 60-mer sans affecter la capacité à former des trimères a été identifiée. Cette mutation (E247K) a été introduite par recombinaison homologue dans des cellules souches embryonnaires de souris qui sont utilisées pour obtenir des souris déficientes en BAFF 60-mer. Les résultats de ces travaux contribueront à mieux cerner le rôle des différentes formes de BAFF et d'APRIL produites en excès dans plusieurs maladies auto-immunes.
Resumo:
BACKGROUND: We previously reported that myeloid cells can induce mucosal healing in a mouse model of acute colitis. Promotion of mucosal repair is becoming a major goal in the treatment of Crohn's disease. Our aim in this study is to investigate the pro-repair function of myeloid cells in healthy donor (HD) and Crohn's disease patients (CD). METHODS: Peripheral blood mononuclear cells (PBMC) from HD and CD patients were isolated from blood samples by Ficoll density gradient. Monocytic CD14+ cells were positively selected by Macs procedure and then differentiated ex-vivo into macrophages (Mφ). The repair function of PBMC, CD14+ monocytic cells and macrophages were evaluated in an in vitro wound healing assay. RESULTS: PBMC and CD14+ myeloid cells from HD and CD were not able to repair at any tested cell concentration. Remarkably, HD Mφ were able to induce wound healing only at high concentration (105 added Mφ), but, if activated with heat killed bacteria, they were able to repair even at very low concentration. On the contrary, not activated CD Mφ were not able to promote healing at any rate, but this function was restored upon activation. CONCLUSION: We showed that CD Mφ in their steady state, unlike HD Mφ, are defective in promoting wound healing. Our results are in keeping with the current theory of CD as an innate immunodeficiency. Defective Mφ may be responsible to the mucosal repair defects in CD patients and to the subsequent chronic activation of the adaptive immune response.