47 resultados para SYSTEMS BIOLOGY
em Universit
Resumo:
Recently, the introduction of second generation sequencing and further advance-ments in confocal microscopy have enabled system-level studies for the functional characterization of genes. The degree of complexity intrinsic to these approaches needs the development of bioinformatics methodologies and computational models for extracting meaningful biological knowledge from the enormous amount of experi¬mental data which is continuously generated. This PhD thesis presents several novel bioinformatics methods and computational models to address specific biological questions in Plant Biology by using the plant Arabidopsis thaliana as a model system. First, a spatio-temporal qualitative analysis of quantitative transcript and protein profiles is applied to show the role of the BREVIS RADIX (BRX) protein in the auxin- cytokinin crosstalk for root meristem growth. Core of this PhD work is the functional characterization of the interplay between the BRX protein and the plant hormone auxin in the root meristem by using a computational model based on experimental evidence. Hyphotesis generated by the modelled to the discovery of a differential endocytosis pattern in the root meristem that splits the auxin transcriptional response via the plasma membrane to nucleus partitioning of BRX. This positional information system creates an auxin transcriptional pattern that deviates from the canonical auxin response and is necessary to sustain the expression of a subset of BRX-dependent auxin-responsive genes to drive root meristem growth. In the second part of this PhD thesis, we characterized the genome-wide impact of large scale deletions on four divergent Arabidopsis natural strains, through the integration of Ultra-High Throughput Sequencing data with data from genomic hybridizations on tiling arrays. Analysis of the identified deletions revealed a considerable portion of protein coding genes affected and supported a history of genomic rearrangements shaped by evolution. In the last part of the thesis, we showed that VIP3 gene in Arabidopsis has an evo-lutionary conserved role in the 3' to 5' mRNA degradation machinery, by applying a novel approach for the analysis of mRNA-Seq data from random-primed mRNA. Altogether, this PhD research contains major advancements in the study of natural genomic variation in plants and in the application of computational morphodynamics models for the functional characterization of biological pathways essential for the plant. - Récemment, l'introduction du séquençage de seconde génération et les avancées dans la microscopie confocale ont permis des études à l'échelle des différents systèmes cellulaires pour la caractérisation fonctionnelle de gènes. Le degrés de complexité intrinsèque à ces approches ont requis le développement de méthodologies bioinformatiques et de modèles mathématiques afin d'extraire de la masse de données expérimentale générée, des information biologiques significatives. Ce doctorat présente à la fois des méthodes bioinformatiques originales et des modèles mathématiques pour répondre à certaines questions spécifiques de Biologie Végétale en utilisant la plante Arabidopsis thaliana comme modèle. Premièrement, une analyse qualitative spatio-temporelle de profiles quantitatifs de transcripts et de protéines est utilisée pour montrer le rôle de la protéine BREVIS RADIX (BRX) dans le dialogue entre l'auxine et les cytokinines, des phytohormones, dans la croissance du méristème racinaire. Le noyau de ce travail de thèse est la caractérisation fonctionnelle de l'interaction entre la protéine BRX et la phytohormone auxine dans le méristème de la racine en utilisant des modèles informatiques basés sur des preuves expérimentales. Les hypothèses produites par le modèle ont mené à la découverte d'un schéma différentiel d'endocytose dans le méristème racinaire qui divise la réponse transcriptionnelle à l'auxine par le partitionnement de BRX de la membrane plasmique au noyau de la cellule. Cette information positionnelle crée une réponse transcriptionnelle à l'auxine qui dévie de la réponse canonique à l'auxine et est nécessaire pour soutenir l'expression d'un sous ensemble de gènes répondant à l'auxine et dépendant de BRX pour conduire la croissance du méristème. Dans la seconde partie de cette thèse de doctorat, nous avons caractérisé l'impact sur l'ensemble du génome des délétions à grande échelle sur quatre souches divergentes naturelles d'Arabidopsis, à travers l'intégration du séquençage à ultra-haut-débit avec l'hybridation génomique sur puces ADN. L'analyse des délétions identifiées a révélé qu'une proportion considérable de gènes codant était affectée, supportant l'idée d'un historique de réarrangement génomique modelé durant l'évolution. Dans la dernière partie de cette thèse, nous avons montré que le gène VÏP3 dans Arabidopsis a conservé un rôle évolutif dans la machinerie de dégradation des ARNm dans le sens 3' à 5', en appliquant une nouvelle approche pour l'analyse des données de séquençage d'ARNm issue de transcripts amplifiés aléatoirement. Dans son ensemble, cette recherche de doctorat contient des avancées majeures dans l'étude des variations génomiques naturelles des plantes et dans l'application de modèles morphodynamiques informatiques pour la caractérisation de réseaux biologiques essentiels à la plante. - Le développement des plantes est écrit dans leurs codes génétiques. Pour comprendre comment les plantes sont capables de s'adapter aux changements environnementaux, il est essentiel d'étudier comment leurs gènes gouvernent leur formation. Plus nous essayons de comprendre le fonctionnement d'une plante, plus nous réalisons la complexité des mécanismes biologiques, à tel point que l'utilisation d'outils et de modèles mathématiques devient indispensable. Dans ce travail, avec l'utilisation de la plante modèle Arabidopsis thalicinci nous avons résolu des problèmes biologiques spécifiques à travers le développement et l'application de méthodes informatiques concrètes. Dans un premier temps, nous avons investigué comment le gène BREVIS RADIX (BRX) régule le développement de la racine en contrôlant la réponse à deux hormones : l'auxine et la cytokinine. Nous avons employé une analyse statistique sur des mesures quantitatives de transcripts et de produits de gènes afin de démontrer que BRX joue un rôle antagonisant dans le dialogue entre ces deux hormones. Lorsque ce-dialogue moléculaire est perturbé, la racine primaire voit sa longueur dramatiquement réduite. Pour comprendre comment BRX répond à l'auxine, nous avons développé un modèle informatique basé sur des résultats expérimentaux. Les simulations successives ont mené à la découverte d'un signal positionnel qui contrôle la réponse de la racine à l'auxine par la régulation du mouvement intracellulaire de BRX. Dans la seconde partie de cette thèse, nous avons analysé le génome entier de quatre souches naturelles d'Arabidopsis et nous avons trouvé qu'une grande partie de leurs gènes étaient manquant par rapport à la souche de référence. Ce résultat indique que l'historique des modifications génomiques conduites par l'évolution détermine une disponibilité différentielle des gènes fonctionnels dans ces plantes. Dans la dernière partie de ce travail, nous avons analysé les données du transcriptome de la plante où le gène VIP3 était non fonctionnel. Ceci nous a permis de découvrir le rôle double de VIP3 dans la régulation de l'initiation de la transcription et dans la dégradation des transcripts. Ce rôle double n'avait jusqu'alors été démontrée que chez l'homme. Ce travail de doctorat supporte le développement et l'application de méthodologies informatiques comme outils inestimables pour résoudre la complexité des problèmes biologiques dans la recherche végétale. L'intégration de la biologie végétale et l'informatique est devenue de plus en plus importante pour l'avancée de nos connaissances sur le fonctionnement et le développement des plantes.
Resumo:
PURPOSE OF REVIEW: In the present review, we will provide the scientific rationale for applying systems biology to the development of vaccines and particularly HIV vaccines, the predictive power of systems biology on the vaccine immunological profile, the correlation between systems biology and the immunological functional profiles of different candidate vaccines, and the value of systems biology in the selection process of identifying the best-in-class candidate vaccines and in the decision process to move into in-vivo evaluation in clinical trials. RECENT FINDINGS: Systems biology has been recently applied to the characterization of the protective yellow fever vaccine YF17D and of seasonal flu vaccines. This has been instrumental in the identification of the components of the immune response that need to be stimulated by the vaccine in order to generate protective immunity. It is worth noting that a systems biology approach is currently being performed to identify correlates of immune protection of the RV144 Thai vaccine, the only known vaccine that showed modest protection against HIV reacquisition. SUMMARY: Systems biology represents a novel and powerful approach to predict the vaccine immunological profile, to identify the protective components of the immune response, and to help in the selection process of the best-in-class vaccines to move into clinical development.
Resumo:
Integration of biological data of various types and the development of adapted bioinformatics tools represent critical objectives to enable research at the systems level. The European Network of Excellence ENFIN is engaged in developing an adapted infrastructure to connect databases, and platforms to enable both the generation of new bioinformatics tools and the experimental validation of computational predictions. With the aim of bridging the gap existing between standard wet laboratories and bioinformatics, the ENFIN Network runs integrative research projects to bring the latest computational techniques to bear directly on questions dedicated to systems biology in the wet laboratory environment. The Network maintains internally close collaboration between experimental and computational research, enabling a permanent cycling of experimental validation and improvement of computational prediction methods. The computational work includes the development of a database infrastructure (EnCORE), bioinformatics analysis methods and a novel platform for protein function analysis FuncNet.
Resumo:
The emergence of omics technologies allowing the global analysis of a given biological or molecular system, rather than the study of its individual components, has revolutionized biomedical research, including cardiovascular medicine research in the past decade. These developments raised the prospect that classical, hypothesis-driven, single gene-based approaches may soon become obsolete. The experience accumulated so far, however, indicates that omic technologies only represent tools similar to those classically used by scientists in the past and nowadays, to make hypothesis and build models, with the main difference that they generate large amounts of unbiased information. Thus, omics and classical hypothesis-driven research are rather complementary approaches with the potential to effectively synergize to boost research in many fields, including cardiovascular medicine. In this article we discuss some general aspects of omics approaches, and review contributions in three areas of vascular biology, thrombosis and haemostasis, atherosclerosis and angiogenesis, in which omics approaches have already been applied (vasculomics).
Resumo:
In the context of Systems Biology, computer simulations of gene regulatory networks provide a powerful tool to validate hypotheses and to explore possible system behaviors. Nevertheless, modeling a system poses some challenges of its own: especially the step of model calibration is often difficult due to insufficient data. For example when considering developmental systems, mostly qualitative data describing the developmental trajectory is available while common calibration techniques rely on high-resolution quantitative data. Focusing on the calibration of differential equation models for developmental systems, this study investigates different approaches to utilize the available data to overcome these difficulties. More specifically, the fact that developmental processes are hierarchically organized is exploited to increase convergence rates of the calibration process as well as to save computation time. Using a gene regulatory network model for stem cell homeostasis in Arabidopsis thaliana the performance of the different investigated approaches is evaluated, documenting considerable gains provided by the proposed hierarchical approach.
Resumo:
BACKGROUND: The ambition of most molecular biologists is the understanding of the intricate network of molecular interactions that control biological systems. As scientists uncover the components and the connectivity of these networks, it becomes possible to study their dynamical behavior as a whole and discover what is the specific role of each of their components. Since the behavior of a network is by no means intuitive, it becomes necessary to use computational models to understand its behavior and to be able to make predictions about it. Unfortunately, most current computational models describe small networks due to the scarcity of kinetic data available. To overcome this problem, we previously published a methodology to convert a signaling network into a dynamical system, even in the total absence of kinetic information. In this paper we present a software implementation of such methodology. RESULTS: We developed SQUAD, a software for the dynamic simulation of signaling networks using the standardized qualitative dynamical systems approach. SQUAD converts the network into a discrete dynamical system, and it uses a binary decision diagram algorithm to identify all the steady states of the system. Then, the software creates a continuous dynamical system and localizes its steady states which are located near the steady states of the discrete system. The software permits to make simulations on the continuous system, allowing for the modification of several parameters. Importantly, SQUAD includes a framework for perturbing networks in a manner similar to what is performed in experimental laboratory protocols, for example by activating receptors or knocking out molecular components. Using this software we have been able to successfully reproduce the behavior of the regulatory network implicated in T-helper cell differentiation. CONCLUSION: The simulation of regulatory networks aims at predicting the behavior of a whole system when subject to stimuli, such as drugs, or determine the role of specific components within the network. The predictions can then be used to interpret and/or drive laboratory experiments. SQUAD provides a user-friendly graphical interface, accessible to both computational and experimental biologists for the fast qualitative simulation of large regulatory networks for which kinetic data is not necessarily available.
Resumo:
The SIB Swiss Institute of Bioinformatics (www.isb-sib.ch) was created in 1998 as an institution to foster excellence in bioinformatics. It is renowned worldwide for its databases and software tools, such as UniProtKB/Swiss-Prot, PROSITE, SWISS-MODEL, STRING, etc, that are all accessible on ExPASy.org, SIB's Bioinformatics Resource Portal. This article provides an overview of the scientific and training resources SIB has consistently been offering to the life science community for more than 15 years.
Resumo:
In Arabidopsis thaliana, gene expression level polymorphisms (ELPs) between natural accessions that exhibit simple, single locus inheritance are promising quantitative trait locus (QTL) candidates to explain phenotypic variability. It is assumed that such ELPs overwhelmingly represent regulatory element polymorphisms. However, comprehensive genome-wide analyses linking expression level, regulatory sequence and gene structure variation are missing, preventing definite verification of this assumption. Here, we analyzed ELPs observed between the Eil-0 and Lc-0 accessions. Compared with non-variable controls, 5' regulatory sequence variation in the corresponding genes is indeed increased. However, approximately 42% of all the ELP genes also carry major transcription unit deletions in one parent as revealed by genome tiling arrays, representing a >4-fold enrichment over controls. Within the subset of ELPs with simple inheritance, this proportion is even higher and deletions are generally more severe. Similar results were obtained from analyses of the Bay-0 and Sha accessions, using alternative technical approaches. Collectively, our results suggest that drastic structural changes are a major cause for ELPs with simple inheritance, corroborating experimentally observed indel preponderance in cloned Arabidopsis QTL.
Resumo:
Circadian cycles and cell cycles are two fundamental periodic processes with a period in the range of 1 day. Consequently, coupling between such cycles can lead to synchronization. Here, we estimated the mutual interactions between the two oscillators by time-lapse imaging of single mammalian NIH3T3 fibroblasts during several days. The analysis of thousands of circadian cycles in dividing cells clearly indicated that both oscillators tick in a 1:1 mode-locked state, with cell divisions occurring tightly 5 h before the peak in circadian Rev-Erbα-YFP reporter expression. In principle, such synchrony may be caused by either unidirectional or bidirectional coupling. While gating of cell division by the circadian cycle has been most studied, our data combined with stochastic modeling unambiguously show that the reverse coupling is predominant in NIH3T3 cells. Moreover, temperature, genetic, and pharmacological perturbations showed that the two interacting cellular oscillators adopt a synchronized state that is highly robust over a wide range of parameters. These findings have implications for circadian function in proliferative tissues, including epidermis, immune cells, and cancer.
Resumo:
Biochemical systems are commonly modelled by systems of ordinary differential equations (ODEs). A particular class of such models called S-systems have recently gained popularity in biochemical system modelling. The parameters of an S-system are usually estimated from time-course profiles. However, finding these estimates is a difficult computational problem. Moreover, although several methods have been recently proposed to solve this problem for ideal profiles, relatively little progress has been reported for noisy profiles. We describe a special feature of a Newton-flow optimisation problem associated with S-system parameter estimation. This enables us to significantly reduce the search space, and also lends itself to parameter estimation for noisy data. We illustrate the applicability of our method by applying it to noisy time-course data synthetically produced from previously published 4- and 30-dimensional S-systems. In addition, we propose an extension of our method that allows the detection of network topologies for small S-systems. We introduce a new method for estimating S-system parameters from time-course profiles. We show that the performance of this method compares favorably with competing methods for ideal profiles, and that it also allows the determination of parameters for noisy profiles.
Resumo:
ExPASy (http://www.expasy.org) has worldwide reputation as one of the main bioinformatics resources for proteomics. It has now evolved, becoming an extensible and integrative portal accessing many scientific resources, databases and software tools in different areas of life sciences. Scientists can henceforth access seamlessly a wide range of resources in many different domains, such as proteomics, genomics, phylogeny/evolution, systems biology, population genetics, transcriptomics, etc. The individual resources (databases, web-based and downloadable software tools) are hosted in a 'decentralized' way by different groups of the SIB Swiss Institute of Bioinformatics and partner institutions. Specifically, a single web portal provides a common entry point to a wide range of resources developed and operated by different SIB groups and external institutions. The portal features a search function across 'selected' resources. Additionally, the availability and usage of resources are monitored. The portal is aimed for both expert users and people who are not familiar with a specific domain in life sciences. The new web interface provides, in particular, visual guidance for newcomers to ExPASy.
Resumo:
Nuclear receptors are a major component of signal transduction in animals. They mediate the regulatory activities of many hormones, nutrients and metabolites on the homeostasis and physiology of cells and tissues. It is of high interest to model the corresponding regulatory networks. While molecular and cell biology studies of individual promoters have provided important mechanistic insight, a more complex picture is emerging from genome-wide studies. The regulatory circuitry of nuclear receptor regulated gene expression networks, and their response to cellular signaling, appear highly dynamic, and involve long as well as short range chromatin interactions. We review how progress in understanding the kinetics and regulation of cofactor recruitment, and the development of new genomic methods, provide opportunities but also a major challenge for modeling nuclear receptor mediated regulatory networks.
Resumo:
Interspecific competition, life history traits, environmental heterogeneity and spatial structure as well as disturbance are known to impact the successful dispersal strategies in metacommunities. However, studies on the direction of impact of those factors on dispersal have yielded contradictory results and often considered only few competing dispersal strategies at the same time. We used a unifying modeling approach to contrast the combined effects of species traits (adult survival, specialization), environmental heterogeneity and structure (spatial autocorrelation, habitat availability) and disturbance on the selected, maintained and coexisting dispersal strategies in heterogeneous metacommunities. Using a negative exponential dispersal kernel, we allowed for variation of both species dispersal distance and dispersal rate. We showed that strong disturbance promotes species with high dispersal abilities, while low local adult survival and habitat availability select against them. Spatial autocorrelation favors species with higher dispersal ability when adult survival and disturbance rate are low, and selects against them in the opposite situation. Interestingly, several dispersal strategies coexist when disturbance and adult survival act in opposition, as for example when strong disturbance regime favors species with high dispersal abilities while low adult survival selects species with low dispersal. Our results unify apparently contradictory previous results and demonstrate that spatial structure, disturbance and adult survival determine the success and diversity of coexisting dispersal strategies in competing metacommunities.
Resumo:
BACKGROUND: The nuclear receptors are a large family of eukaryotic transcription factors that constitute major pharmacological targets. They exert their combinatorial control through homotypic heterodimerisation. Elucidation of this dimerisation network is vital in order to understand the complex dynamics and potential cross-talk involved. RESULTS: Phylogeny, protein-protein interactions, protein-DNA interactions and gene expression data have been integrated to provide a comprehensive and up-to-date description of the topology and properties of the nuclear receptor interaction network in humans. We discriminate between DNA-binding and non-DNA-binding dimers, and provide a comprehensive interaction map, that identifies potential cross-talk between the various pathways of nuclear receptors. CONCLUSION: We infer that the topology of this network is hub-based, and much more connected than previously thought. The hub-based topology of the network and the wide tissue expression pattern of NRs create a highly competitive environment for the common heterodimerising partners. Furthermore, a significant number of negative feedback loops is present, with the hub protein SHP [NR0B2] playing a major role. We also compare the evolution, topology and properties of the nuclear receptor network with the hub-based dimerisation network of the bHLH transcription factors in order to identify both unique themes and ubiquitous properties in gene regulation. In terms of methodology, we conclude that such a comprehensive picture can only be assembled by semi-automated text-mining, manual curation and integration of data from various sources.