36 resultados para Multi-model inference
em Universit
Resumo:
Understanding and anticipating biological invasions can focus either on traits that favour species invasiveness or on features of the receiving communities, habitats or landscapes that promote their invasibility. Here, we address invasibility at the regional scale, testing whether some habitats and landscapes are more invasible than others by fitting models that relate alien plant species richness to various environmental predictors. We use a multi-model information-theoretic approach to assess invasibility by modelling spatial and ecological patterns of alien invasion in landscape mosaics and testing competing hypotheses of environmental factors that may control invasibility. Because invasibility may be mediated by particular characteristics of invasiveness, we classified alien species according to their C-S-R plant strategies. We illustrate this approach with a set of 86 alien species in Northern Portugal. We first focus on predictors influencing species richness and expressing invasibility and then evaluate whether distinct plant strategies respond to the same or different groups of environmental predictors. We confirmed climate as a primary determinant of alien invasions and as a primary environmental gradient determining landscape invasibility. The effects of secondary gradients were detected only when the area was sub-sampled according to predictions based on the primary gradient. Then, multiple predictor types influenced patterns of alien species richness, with some types (landscape composition, topography and fire regime) prevailing over others. Alien species richness responded most strongly to extreme land management regimes, suggesting that intermediate disturbance induces biotic resistance by favouring native species richness. Land-use intensification facilitated alien invasion, whereas conservation areas hosted few invaders, highlighting the importance of ecosystem stability in preventing invasions. Plants with different strategies exhibited different responses to environmental gradients, particularly when the variations of the primary gradient were narrowed by sub-sampling. Such differential responses of plant strategies suggest using distinct control and eradication approaches for different areas and alien plant groups.
Using life strategies to explore the vulnerability of ecosystem services to invasion by alien plants
Resumo:
Invasive plants can have different effects of ecosystem functioning and on the provision of ecosystem services, from strongly deleterious impacts to positive effects. The nature and intensity of such effects will depend on the service and ecosystem being considered, but also on features of life strategies of invaders that influence their invasiveness as well as their influence of key processes of receiving ecosystems. To address the combined effect of these various factors we developed a robust and efficient methodological framework that allows to identify areas of possible conflict between ecosystem services and alien invasive plants, considering interactions between landscape invasibility and species invasiveness. Our framework combines the statistical robustness of multi-model inference, efficient techniques to map ecosystem services, and life strategies as a functional link between invasion, functional changes and potential provision of services by invaded ecosystems. The framework was applied to a test region in Portugal, for which we could successfully predict the current patterns of plant invasion, of ecosystem service provision, and finally of probable conflict (expressing concern for negative impacts, and value for positive impacts on services) between alien species richness (total and per plant life strategy) and the potential provision of selected services. Potential conflicts were identified for all combinations of plant strategy and ecosystem service, with an emphasis for those concerning conflicts with carbon sequestration, water regulation and wood production. Lower levels of conflict were obtained between invasive plant strategies and the habitat for biodiversity supporting service. The added value of the proposed framework in the context of landscape management and planning is discussed in perspective of anticipation of conflicts, mitigation of negative impacts, and potentiation of positive effects of plant invasions on ecosystems and their services.
Resumo:
We describe a novel dissimilarity framework to analyze spatial patterns of species diversity and illustrate it with alien plant invasions in Northern Portugal. We used this framework to test the hypothesis that patterns of alien invasive plant species richness and composition are differently affected by differences in climate, land use and landscape connectivity (i.e. Geographic distance as a proxy and vectorial objects that facilitate dispersal such as roads and rivers) between pairs of localities at the regional scale. We further evaluated possible effects of plant life strategies (Grime's C-S-R) and residence time. Each locality consisted of a 1 km(2) landscape mosaic in which all alien invasive species were recorded by visiting all habitat types. Multi-model inference revealed that dissimilarity in species richness is more influenced by environmental distance (particularly climate), whereas geographic distance (proxies for dispersal limitations) is more important to explain dissimilarity in species composition, with a prevailing role for ecotones and roads. However, only minor differences were found in the responses of the three C-S-R strategies. Some effect of residence time was found, but only for dissimilarity in species richness. Our results also indicated that environmental conditions (e.g. climate conditions) limit the number of alien species invading a given site, but that the presence of dispersal corridors determines the paths of invasion and therefore the pool of species reaching each site. As geographic distances (e.g. ecotones and roads) tend to explain invasion at our regional scale highlights the need to consider the management of alien invasions in the context of integrated landscape planning. Alien species management should include (but not be limited to) the mitigation of dispersal pathways along linear infrastructures. Our results therefore highlight potentially useful applications of the novel multimodel framework to the anticipation and management of plant invasions. (C) 2013 Elsevier GmbH. All rights reserved.
Resumo:
Computed Tomography (CT) represents the standard imaging modality for tumor volume delineation for radiotherapy treatment planning of retinoblastoma despite some inherent limitations. CT scan is very useful in providing information on physical density for dose calculation and morphological volumetric information but presents a low sensitivity in assessing the tumor viability. On the other hand, 3D ultrasound (US) allows a highly accurate definition of the tumor volume thanks to its high spatial resolution but it is not currently integrated in the treatment planning but used only for diagnosis and follow-up. Our ultimate goal is an automatic segmentation of gross tumor volume (GTV) in the 3D US, the segmentation of the organs at risk (OAR) in the CT and the registration of both modalities. In this paper, we present some preliminary results in this direction. We present 3D active contour-based segmentation of the eye ball and the lens in CT images; the presented approach incorporates the prior knowledge of the anatomy by using a 3D geometrical eye model. The automated segmentation results are validated by comparing with manual segmentations. Then, we present two approaches for the fusion of 3D CT and US images: (i) landmark-based transformation, and (ii) object-based transformation that makes use of eye ball contour information on CT and US images.
Resumo:
In this study we propose an evaluation of the angular effects altering the spectral response of the land-cover over multi-angle remote sensing image acquisitions. The shift in the statistical distribution of the pixels observed in an in-track sequence of WorldView-2 images is analyzed by means of a kernel-based measure of distance between probability distributions. Afterwards, the portability of supervised classifiers across the sequence is investigated by looking at the evolution of the classification accuracy with respect to the changing observation angle. In this context, the efficiency of various physically and statistically based preprocessing methods in obtaining angle-invariant data spaces is compared and possible synergies are discussed.
Resumo:
We analysed the relationship between changes in land cover patterns and the Eurasian otter occurrence over the course of about 20 years (1985-2006) using multi-temporal Species Distribution Models (SDMs). The study area includes five river catchments covering most of the otter's Italian range. Land cover and topographic data were used as proxies of the ecological requirements of the otter within a 300-m buffer around river courses. We used species presence, pseudo-absence data, and environmental predictors to build past (1985) and current (2006) SDMs by applying an ensemble procedure through the BIOMOD modelling package. The performance of each model was evaluated by measuring the area under the curve (AUC) of the receiver-operating characteristic (ROC). Multi-temporal analyses of species distribution and land cover maps were performed by comparing the maps produced for 1985 and 2006. The ensemble procedure provided a good overall modelling accuracy, revealing that elevation and slope affected the otter's distribution in the past; in contrast, land cover predictors, such as cultivations and forests, were more important in the present period. During the transition period, 20.5% of the area became suitable, with 76% of the new otter presence data being located in these newly available areas. The multi-temporal analysis suggested that the quality of otter habitat improved in the last 20 years owing to the expansion of forests and to the reduction of cultivated fields in riparian belts. The evidence presented here stresses the great potential of riverine habitat restoration and environmental management for the future expansion of the otter in Italy
Resumo:
Within Data Envelopment Analysis, several alternative models allow for an environmental adjustment. The majority of them deliver divergent results. Decision makers face the difficult task of selecting the most suitable model. This study is performed to overcome this difficulty. By doing so, it fills a research gap. First, a two-step web-based survey is conducted. It aims (1) to identify the selection criteria, (2) to prioritize and weight the selection criteria with respect to the goal of selecting the most suitable model and (3) to collect the preferences about which model is preferable to fulfil each selection criterion. Second, Analytic Hierarchy Process is used to quantify the preferences expressed in the survey. Results show that the understandability, the applicability and the acceptability of the alternative models are valid selection criteria. The selection of the most suitable model depends on the preferences of the decision makers with regards to these criteria.
Resumo:
The algorithmic approach to data modelling has developed rapidly these last years, in particular methods based on data mining and machine learning have been used in a growing number of applications. These methods follow a data-driven methodology, aiming at providing the best possible generalization and predictive abilities instead of concentrating on the properties of the data model. One of the most successful groups of such methods is known as Support Vector algorithms. Following the fruitful developments in applying Support Vector algorithms to spatial data, this paper introduces a new extension of the traditional support vector regression (SVR) algorithm. This extension allows for the simultaneous modelling of environmental data at several spatial scales. The joint influence of environmental processes presenting different patterns at different scales is here learned automatically from data, providing the optimum mixture of short and large-scale models. The method is adaptive to the spatial scale of the data. With this advantage, it can provide efficient means to model local anomalies that may typically arise in situations at an early phase of an environmental emergency. However, the proposed approach still requires some prior knowledge on the possible existence of such short-scale patterns. This is a possible limitation of the method for its implementation in early warning systems. The purpose of this paper is to present the multi-scale SVR model and to illustrate its use with an application to the mapping of Cs137 activity given the measurements taken in the region of Briansk following the Chernobyl accident.
Resumo:
In this paper we included a very broad representation of grass family diversity (84% of tribes and 42% of genera). Phylogenetic inference was based on three plastid DNA regions rbcL, matK and trnL-F, using maximum parsimony and Bayesian methods. Our results resolved most of the subfamily relationships within the major clades (BEP and PACCMAD), which had previously been unclear, such as, among others the: (i) BEP and PACCMAD sister relationship, (ii) composition of clades and the sister-relationship of Ehrhartoideae and Bambusoideae + Pooideae, (iii) paraphyly of tribe Bambuseae, (iv) position of Gynerium as sister to Panicoideae, (v) phylogenetic position of Micrairoideae. With the presence of a relatively large amount of missing data, we were able to increase taxon sampling substantially in our analyses from 107 to 295 taxa. However, bootstrap support and to a lesser extent Bayesian inference posterior probabilities were generally lower in analyses involving missing data than those not including them. We produced a fully resolved phylogenetic summary tree for the grass family at subfamily level and indicated the most likely relationships of all included tribes in our analysis.
Multimodel inference and multimodel averaging in empirical modeling of occupational exposure levels.
Resumo:
Empirical modeling of exposure levels has been popular for identifying exposure determinants in occupational hygiene. Traditional data-driven methods used to choose a model on which to base inferences have typically not accounted for the uncertainty linked to the process of selecting the final model. Several new approaches propose making statistical inferences from a set of plausible models rather than from a single model regarded as 'best'. This paper introduces the multimodel averaging approach described in the monograph by Burnham and Anderson. In their approach, a set of plausible models are defined a priori by taking into account the sample size and previous knowledge of variables influent on exposure levels. The Akaike information criterion is then calculated to evaluate the relative support of the data for each model, expressed as Akaike weight, to be interpreted as the probability of the model being the best approximating model given the model set. The model weights can then be used to rank models, quantify the evidence favoring one over another, perform multimodel prediction, estimate the relative influence of the potential predictors and estimate multimodel-averaged effects of determinants. The whole approach is illustrated with the analysis of a data set of 1500 volatile organic compound exposure levels collected by the Institute for work and health (Lausanne, Switzerland) over 20 years, each concentration having been divided by the relevant Swiss occupational exposure limit and log-transformed before analysis. Multimodel inference represents a promising procedure for modeling exposure levels that incorporates the notion that several models can be supported by the data and permits to evaluate to a certain extent model selection uncertainty, which is seldom mentioned in current practice.
Resumo:
It is generally accepted that most plant populations are locally adapted. Yet, understanding how environmental forces give rise to adaptive genetic variation is a challenge in conservation genetics and crucial to the preservation of species under rapidly changing climatic conditions. Environmental variation, phylogeographic history, and population demographic processes all contribute to spatially structured genetic variation, however few current models attempt to separate these confounding effects. To illustrate the benefits of using a spatially-explicit model for identifying potentially adaptive loci, we compared outlier locus detection methods with a recently-developed landscape genetic approach. We analyzed 157 loci from samples of the alpine herb Gentiana nivalis collected across the European Alps. Principle coordinates of neighbor matrices (PCNM), eigenvectors that quantify multi-scale spatial variation present in a data set, were incorporated into a landscape genetic approach relating AFLP frequencies with 23 environmental variables. Four major findings emerged. 1) Fifteen loci were significantly correlated with at least one predictor variable (R (adj) (2) > 0.5). 2) Models including PCNM variables identified eight more potentially adaptive loci than models run without spatial variables. 3) When compared to outlier detection methods, the landscape genetic approach detected four of the same loci plus 11 additional loci. 4) Temperature, precipitation, and solar radiation were the three major environmental factors driving potentially adaptive genetic variation in G. nivalis. Techniques presented in this paper offer an efficient method for identifying potentially adaptive genetic variation and associated environmental forces of selection, providing an important step forward for the conservation of non-model species under global change.