68 resultados para Insect seed predation

em Universit


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutualism often involves reciprocal exploitation due to individual selection for increased benefits even at the expense of the partner. Therefore, stability and outcomes of such interactions crucially depend on cost limitation mechanisms. In the plant, pollinator /seed predator interaction between Silene latifolia (Caryophyllaceae) and Hadena bicruris (Lepidoptera: Noctuidae), moths generate pollination benefits as adults but impose seed predation costs as larvae. We examined whether floral morphology limits over-exploitation by constraining oviposition site. Oviposition site varies naturally inside vs. outside the corolla tube, but neither its determinants nor its effect on the interaction have been investigated. In a common garden with plants originating from eight populations, corolla tube length predicted oviposition site, but not egg presence or pollination efficiency, suggesting that long corolla tubes constrain the moth to lay eggs on petals. Egg position was also predicted by the combined effect of corolla tube and moth ovipositor lengths, with shorter ovipositor than corolla tube resulting in higher probability for eggs outside. Egg position on a given plant was repeatable over different exposure nights. When egg position was experimentally manipulated, eggs placed on the petal resulted in significantly fewer successful fruit attacks compared with eggs placed inside the corolla tube, suggesting differences in egg/larval mortality. Egg position also differently affected larval mass, fruit mass and fruit development. Our results indicate that constraining oviposition site through a long corolla tube reduces seed predation costs suffered by the plant without negatively affecting pollination efficiency and, hence may act to limit over-exploitation. However, the net effects of corolla tube depth variation on this interaction may fluctuate with extrinsic factors affecting egg mortality, and with patterns of gene flow affecting trait matching between the interacting species. The intermediate fitness costs incurred by both plant and insect associated with the different egg positions may reduce selective pressures for this interaction to evolve towards antagonism, favouring instead a mutualistic outcome. While a role for oviposition site variation in cost limitation is a novel finding in this system, it may apply more generally also to other mutualisms involving pollinating seed predators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An increased understanding of intraspecific seed packaging (i.e. seed size/number strategy) variation across different environments may improve current knowledge of the ecological forces that drive seed evolution in plants. In particular, pre-dispersal seed predation may influence seed packaging strategies, triggering a reduction of the resources allocated to undamaged seeds within the preyed fruits. Assessing plant reactions to pre-dispersal seed predation is crucial to a better understanding of predation effects, but the response of plants to arthropod attacks remains unexplored. We have assessed the effect of cone predation on the size and viability of undamaged seeds in populations of Juniperus thurifera with contrasting seed packaging strategies, namely, North African populations with single-large-seeded cones and South European populations with multi-small-seeded cones. Our results show that the incidence of predation was lower on the single-large-seeded African cones than on the multi-small-seeded European ones. Seeds from non-preyed cones were also larger and had a higher germination success than uneaten seeds from preyed cones, but only in populations with multi-seeded cones and in cones attacked by Trisetacus sp., suggesting a differential plastic response to predation. It is possible that pre-dispersal seed predation has been a strong selective pressure in European populations with high cone predation rates, being a process which maintains multi-small-seeded cones and empty seeds as a strategy to save some seeds from predation. Conversely, pre-dispersal predation might not have a strong effect in the African populations with single-large-seeded cones characterized by seed germination and filling rates higher than those in the European populations. Our results indicate that differences in pre-dispersal seed predators and predation levels may affect both selection on and intraspecific variation in seed packaging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Résumé de la thèseBien que le mutualisme puisse être considéré comme une relation harmonieuse entre différentes espèces, son étude révèle plutôt une exploitation réciproque où chaque partenaire tente de maximiser ses bénéfices tout en réduisant ses coûts. Dans ce contexte, l'identification des facteurs qui favorisent ou contrarient, au cours de l'évolution, une issue mutualiste est une étape majeure pour pouvoir reconstruire les étapes clés menant à l'apparition et au maintien des interactions mutualistes. Le but de ce doctorat était l'identification des traits phénotypiques qui permettent à la plante Silene latofolia (Caryophyllacée)et à son pollinisateur - prédateur de graines, la phalène Hadena bicruris (Noctuidé), d'augmenter les bénéfices nets que chacun retire de l'interaction. Ce système d'étude est particulièrement bien approprié à l'étude de ces traits, car on peut assez facilement estimer la qualité et la quantité des descendants (fitness) des deux partenaires. En effet, la femelle papillon pond un oeuf dans la fleur qu'elle pollinise et sa larve se développe dans le fruit, consommant les graines de la plante. Ainsi, sur une même plante, il est possible d'estimer les succès respectifs de la plante et du papillon à obtenir une descendance. De plus, le conflit d'intérêt autour des graines qui sont indispensables, à la fois à la plante et au papillon, peut stimuler l'évolution de traits qui limitent la surexploitation réciproque des partenaires. Dans une première étude, j'ai montré que le papillon mâle était un pollinisateur efficace de S. latifolia et qu'ainsi, il permettait à la plante d'augmenter le nombre de graines produites (i.e.bénéfice) sans pour autant augmenter la quantité de larves sur la plante. Dans ce système, les papillons pondent un seul oeuf par fleur, déposé soit à l'intérieur de la fleur, dans le tube de corolle, soit sur le pétale. Ma seconde étude montre que les plantes répondent différemment à la présence des oeufs suivant leur position. Aussi, quand l'oeuf est placé dans la fleur, la plante a davantage tendance à ne pas développer le fruit de la fleur infesté ou bien à produire des fruits plus petits que lorsque l'oeuf est placé sur le pétale. Enfin, j'ai montré que la femelle du papillon pond plus souvent sur le pétale lorsque elle visite des fleurs dotées d'un long tube de corolle, et que les larves issues de ces oeufs ont moins de chances de réussir à pénétrer dans le fruit que les larves issues des oeufs placés à l'intérieur de la fleur. Aussi, la variation observée du site de ponte pourrait être causé par la morphologie de la fleur qui contraint le papillon à pondre sur le pétale. Vu dans leur ensemble, les résultats obtenus pendant ce doctorat suggèrent que la participation des mâles à la pollination, l'absence de développement des fruits et la profondeur du tube de corolle pourraient réduire les coûts que S. latifolia subit dans son interaction avec H. bicruris. Par ailleurs, je n'ai pas détecté de mécanismes qui permettraient au papillon de réduire les coûts que la plante pourrait lui imposer. La prochaine étape serait de déterminer l'effet des traits identifiés dans ce doctorat sur la fitness globale de la plante et du papillon pour estimer pleinement leur efficacité à réduire les coûts et à favoriser une issue mutualiste. De même, il faudrait évaluer l'effet de ces traits en populations naturelles pour identifier le rôle des facteurs environnementaux sur leur efficacité.AbstractAlthough mutualisms can be regarded as harmonious relationships between the interacting partners, they are best conceptualized as reciprocal exploitations in which each partner attempts to increase its own benefits and decrease its costs. To date, identifying the factors which promote or discourage mutualistic outcomes remains a major goal to reconstruct the ecological conditions leading to mutualisms. The aim of this PhD thesis was to identify phenotypic traits that may increase the net benefits of each partner in the interaction between the plant Silene latifolia (Caryophyllaceae) and its pollinator / seed predator, the moth Hadena bicruris (Noctuidae). This study system is particularly well suited because the fitness of both interacting species can be assessed. The female moth lays its egg in the flower it pollinated, and its offspring grows in the fruit, feeding on the seeds of the plant, which allows for the follow-up of both larva and fruit fates. Furthermore, the inherent conflict of interest over the seeds as plant progeny vs. larval resource may stimulate the evolution of traits that reduce overexploitation in both the moth and plant. In a first study, I show that male moths are efficient pollinators, hence increasing seed production without increasing oviposition. The contribution of male moths to pollination might thus improve the net benefits of the interaction for the host plant. Females of the H. bicruris moth lay a single egg per flower, and place it either inside the corolla tube or on the petal. My second study shows that plants are more likely to abort the infested flower or to produce a smaller fruit when the egg was experimentally placed inside the flower compared to plants that received an egg on the petal. Finally, female moths were found to lay their eggs more frequently on the petal when visiting a flower with a deep corolla tube, and larvae hatching from these eggs less likely to successfully attack the fruit. Variation in egg position on the flower may thus be the result of a constraint imposed by floral morphology. Overall, this PhD work suggests that the pollination by male moths, flower abortion, and deep corolla tube may efficiently reduce the costs experienced by S. latifolia in its interaction with H. bicruris. Interestingly, no apparent mechanism of costs reduction was detected for the moth. Further studies should focus on the effects of these traits (i) in the long term fitness of both the plant and the insect and (ii) their interactions with environmental factors (biotic and abiotic) that may affect their efficiency in natural populations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The shift from solitary to social organisms constitutes one of the major transitions in evolution. The highest level of sociality is found in social insects (ants, termites and some species of bees and wasps). Division of labor is central to the organization of insect societies and is thought to be at the root of their ecological success. There are two main levels of division of labor in social insect colonies. The first relates to reproduction and involves the coexistence of queen and worker castes: while reproduction is usually monopolized by one or several queens, functionally sterile workers perform all the tasks to maintain the colony, such as nest building, foraging or brood care. The second level of division of labor, relating to such non-reproductive duties, is characterized by the performance of different tasks or roles by different groups of workers. This PhD aims to better understand the mechanisms underlying division of labor in insect societies, by investigating how genes and physiology influence caste determination and worker behavior in ants. In the first axis of this PhD, we studied the nature of genetic effects on division of labor. We used the Argentine ant Linepithema humile to conduct controlled crosses in the laboratory, which revealed the existence of non-additive genetic effects, such as parent-of-origin and genetic compatibility effects, on caste determination and worker behavior. In the second axis, we focused on the physiological regulation of division of labor. Using Pogonomyrmex seed- harvester ants, we performed experimental manipulation of hibernation, hormonal treatments, gene expression analyses and protein quantification to identify the physiological pathways regulating maternal effects on caste determination. Finally, comparing gene expression between nurses and foragers allowed us to reveal the association between vitellogenin and worker behavior in Pogonomyrmex ants. This PhD provides important insights into the role of genes and physiology in the regulation of division of labor in social insect colonies, helping to better understand the organization, evolution and ecological success of insect societies. - L'une des principales transitions évolutives est le passage de la vie solitaire à la vie sociale. La socialité atteint son paroxysme chez les insectes sociaux que sont les fourmis, les termites et certaines espèces d'abeilles et de guêpes. La division du travail est la clé de voûte de l'organisation de ces sociétés d'insectes et la raison principale de leur succès écologique. La division du travail s'effectue à deux niveaux dans les colonies d'insectes sociaux. Le premier niveau concerne la reproduction et implique la coexistence de deux castes : les reines et les ouvrières. Tandis que la reproduction est le plus souvent monopolisée par une ou plusieurs reines, les ouvrières stériles effectuent les tâches nécessaires au bon fonctionnement de la colonie, telles que la construction du nid, la recherche de nourriture ou le soin au couvain. Le second niveau de division du travail, qui concerne les tâches autres que la reproduction, implique la réalisation de différents travaux par différents groupes d'ouvrières. Le but de ce doctorat est de mieux comprendre les mécanismes sous-jacents de la division du travail dans les sociétés d'insectes en étudiant comment les gènes et la physiologie influencent la détermination de la caste et le comportement des ouvrières chez les fourmis. Dans le premier axe de ce doctorat, nous avons étudié la nature des influences génétiques sur la division du travail. Nous avons utilisé la fourmi d'Argentine, Linepithema humile, pour effectuer des croisements contrôlés en laboratoire. Cette méthode nous a permis de révéler l'existence d'influences génétiques non additives, telles que des influences dépendantes de l'origine parentale ou des effets de compatibilité génétique, sur la détermination de la caste et le comportement des ouvrières. Dans le second axe, nous nous sommes intéressés à la régulation physiologique de la division du travail. Nous avons utilisé des fourmis moissonneuses du genre Pogonomyrmex pour effectuer des hibernations artificieHes, des traitements hormonaux, des analyses d'expression de gènes et des mesures de vitellogénine, ce qui nous a permis d'identifier les mécanismes physiologiques régulant les effets maternels sur la détermination de la caste. Enfin, la comparaison d'expression de gènes entre nourrices et fourrageuses suggère un rôle de la vitellogénine dans la régulation du comportement des ouvrières chez les fourmis moissonneuses. En détaillant les influences des gènes et de la physiologie dans la régulation de la division du travail dans les colonies d'insectes sociaux, ce doctorat fournit d'importantes informations permettant de mieux comprendre l'organisation, l'évolution et le succès écologique des sociétés d'insectes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND AIMS: Pollen and seed dispersal in herbaceous insect-pollinated plants are often restricted, inducing strong population structure. To what extent this influences mating within and among patches is poorly understood. This study investigates the influence of population structure on pollen performance using controlled pollinations and genetic markers. METHODS: Population structure was investigated in a patchily distributed population of gynodioecious Silene vulgaris in Switzerland using polymorphic microsatellite markers. Experimental pollinations were performed on 21 hermaphrodite recipients using pollen donors at three spatial scales: (a) self-pollination; (b) within-patch cross-pollinations; and (c) between-patch cross-pollinations. Pollen performance was then compared with respect to crossing distance. KEY RESULTS: The population of S. vulgaris was characterized by a high degree of genetic sub-structure, with neighbouring plants more related to one another than to distant individuals. Inbreeding probably results from both selfing and biparental inbreeding. Pollen performance increased with distance between mates. Between-patch pollen performed significantly better than both self- and within-patch pollen donors. However, no significant difference was detected between self- and within-patch pollen donors. CONCLUSIONS: The results suggest that population structure in animal-pollinated plants is likely to influence mating patterns by favouring cross-pollinations between unrelated plants. However, the extent to which this mechanism could be effective as a pre-zygotic barrier preventing inbred mating depends on the patterns of pollinator foraging and their influence on pollen dispersal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kin selection is the key to understanding the evolution of cooperation in insect societies. However, kin selection also predicts potential kin conflict, and understanding how these conflicts are resolved is a major goal of current research on social insects

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insect odorant receptors (ORs) comprise an enormous protein family that translates environmental chemical signals into neuronal electrical activity. These heptahelical receptors are proposed to function as ligand-gated ion channels and/or to act metabotropically as G protein-coupled receptors (GPCRs). Resolving their signalling mechanism has been hampered by the lack of tertiary structural information and primary sequence similarity to other proteins. We use amino acid evolutionary covariation across these ORs to define restraints on structural proximity of residue pairs, which permit de novo generation of three-dimensional models. The validity of our analysis is supported by the location of functionally important residues in highly constrained regions of the protein. Importantly, insect OR models exhibit a distinct transmembrane domain packing arrangement to that of canonical GPCRs, establishing the structural unrelatedness of these receptor families. The evolutionary couplings and models predict odour binding and ion conduction domains, and provide a template for rationale structure-activity dissection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some bacteria have the capacity to reduce incidence and severity of plant diseases either by inhibiting the pathogen or by modulating the resistance response of the plant. Plants dispose of different resistance mechanisms that are influenced by the biotic and abiotic environment. The present experiments explored the effects of biocontrol strains of Pseudomonas fluorescens on the resistance of wheat varieties against brown rust disease caused by Puccinia triticina. Root inoculation with biocontrol pseudomonads reduced the disease severity on the leaves. The plant response depended on the genotype of both the microbes and the wheat varieties, suggesting a straight interaction at the molecular level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genomes of eusocial insects code for dramatic examples of phenotypic plasticity and social organization. We compared the genomes of seven ants, the honeybee, and various solitary insects to examine whether eusocial lineages share distinct features of genomic organization. Each ant lineage contains ∼4000 novel genes, but only 64 of these genes are conserved among all seven ants. Many gene families have been expanded in ants, notably those involved in chemical communication (e.g., desaturases and odorant receptors). Alignment of the ant genomes revealed reduced purifying selection compared with Drosophila without significantly reduced synteny. Correspondingly, ant genomes exhibit dramatic divergence of noncoding regulatory elements; however, extant conserved regions are enriched for novel noncoding RNAs and transcription factor-binding sites. Comparison of orthologous gene promoters between eusocial and solitary species revealed significant regulatory evolution in both cis (e.g., Creb) and trans (e.g., fork head) for nearly 2000 genes, many of which exhibit phenotypic plasticity. Our results emphasize that genomic changes can occur remarkably fast in ants, because two recently diverged leaf-cutter ant species exhibit faster accumulation of species-specific genes and greater divergence in regulatory elements compared with other ants or Drosophila. Thus, while the "socio-genomes" of ants and the honeybee are broadly characterized by a pervasive pattern of divergence in gene composition and regulation, they preserve lineage-specific regulatory features linked to eusociality. We propose that changes in gene regulation played a key role in the origins of insect eusociality, whereas changes in gene composition were more relevant for lineage-specific eusocial adaptations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Wind pollination is thought to have evolved in response to selection for mechanisms to promote pollination success, when animal pollinators become scarce or unreliable. We might thus expect wind-pollinated plants to be less prone to pollen limitation than their insect-pollinated counterparts. Yet, if pollen loads on stigmas of wind-pollinated species decline with distance from pollen donors, seed set might nevertheless be pollen-limited in populations of plants that cannot self-fertilize their progeny, but not in self-compatible hermaphroditic populations.2. Here, we test this hypothesis by comparing pollen limitation between dioecious and hermaphroditic (monoecious) populations of the wind-pollinated herb Mercurialis annua.3. In natural populations, seed set was pollen-limited in low-density patches of dioecious, but not hermaphroditic, M. annua, a finding consistent with patterns of distance-dependent seed set by females in an experimental array. Nevertheless, seed set was incomplete in both dioecious and hermaphroditic populations, even at high local densities. Further, both factors limited the seed set of females and hermaphrodites, after we manipulated pollen and resource availability in a common garden experiment.4. Synthesis. Our results are consistent with the idea that pollen limitation plays a role in the evolution of combined vs. separate sexes in M. annua. Taken together, they point to the potential importance of pollen transfer between flowers on the same plant (geitonogamy) by wind as a mechanism of reproductive assurance and to the dual roles played by pollen and resource availability in limiting seed set. Thus, seed set can be pollen-limited in sparse populations of a wind-pollinated species, where mates are rare or absent, having potentially important demographic and evolutionary implications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plants activate direct and indirect defences in response to insect egg deposition. However, whether eggs can manipulate plant defence is unknown. In Arabidopsis thaliana, oviposition by the butterfly Pieris brassicae triggers cellular and molecular changes that are similar to the changes caused by biotrophic pathogens. In the present study, we found that the plant defence signal salicylic acid (SA) accumulates at the site of oviposition. This is unexpected, as the SA pathway controls defence against fungal and bacterial pathogens and negatively interacts with the jasmonic acid (JA) pathway, which is crucial for the defence against herbivores. Application of P. brassicae or Spodoptera littoralis egg extract onto leaves reduced the induction of insect-responsive genes after challenge with caterpillars, suggesting that egg-derived elicitors suppress plant defence. Consequently, larval growth of the generalist herbivore S. littoralis, but not of the specialist P. brassicae, was significantly higher on plants treated with egg extract than on control plants. In contrast, suppression of gene induction and enhanced S. littoralis performance were not seen in the SA-deficient mutant sid2-1, indicating that it is SA that mediates this phenomenon. These data reveal an intriguing facet of the cross-talk between SA and JA signalling pathways, and suggest that insects have evolved a way to suppress the induction of defence genes by laying eggs that release elicitors. We show here that egg-induced SA accumulation negatively interferes with the JA pathway, and provides an advantage for generalist herbivores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has been an ardent interest in herbivore saliva due to its roles in inducing plant defenses and its impact on herbivore fitness. Two techniques are described that inhibit the secretion of labial saliva from the caterpillar, Helicoverpa zea, during feeding. The methods rely on cauterizing the caterpillar's spinneret, the principal secretory structure of the labial glands, or surgically removing the labial salivary gland. Both methods successfully inhibit secretion of saliva and the principal salivary enzyme glucose oxidase. Caterpillars with inhibited saliva production feed at similar rates as the untreated caterpillars, pupate, and emerge as adults. Glucose oxidase has been suggested to increase the caterpillar's survival through the suppression of inducible anti-herbivore defenses in plants. Tobacco (Nicotiana tabacum) leaves fed on by caterpillars with ablated salivary glands had significantly higher levels of nicotine, an inducible anti-herbivore defense compound of tobacco, than leaves fed upon by caterpillars with intact labial salivary glands. Tomato (Lycopersicon esculentum) leaves fed upon by caterpillars with suppressed salivary secretions showed greatly reduced evidence of hydrogen peroxide formation compared to leaves fed upon by intact caterpillars. These two methods are useful techniques for determining the role that saliva plays in manipulating plant anti-herbivore defenses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Division of labour is one of the most prominent features of social insects. The efficient allocation of individuals to different tasks requires dynamic adjustment in response to environmental perturbations. Theoretical models suggest that the colony-level flexibility in responding to external changes and internal perturbation may depend on the within-colony genetic diversity, which is affected by the number of breeding individuals. However, these models have not considered the genetic architecture underlying the propensity of workers to perform the various tasks. Here, we investigated how both within-colony genetic variability (stemming from variation in the number of matings by queens) and the number of genes influencing the stimulus (threshold) for a given task at which workers begin to perform that task jointly influence task allocation efficiency. We used a numerical agent-based model to investigate the situation where workers had to perform either a regulatory task or a foraging task. One hundred generations of artificial selection in populations consisting of 500 colonies revealed that an increased number of matings always improved colony performance, whatever the number of loci encoding the thresholds of the regulatory and foraging tasks. However, the beneficial effect of additional matings was particularly important when the genetic architecture of queens comprised one or a few genes for the foraging task's threshold. By contrast, a higher number of genes encoding the foraging task reduced colony performance with the detrimental effect being stronger when queens had mated with several males. Finally, the number of genes encoding the threshold for the regulatory task only had a minor effect on colony performance. Overall, our numerical experiments support the importance of mating frequency on efficiency of division of labour and also reveal complex interactions between the number of matings and genetic architecture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wounding in multicellular eukaryotes results in marked changes in gene expression that contribute to tissue defense and repair. Using a cDNA microarray technique, we analyzed the timing, dynamics, and regulation of the expression of 150 genes in mechanically wounded leaves of Arabidopsis. Temporal accumulation of a group of transcripts was correlated with the appearance of oxylipin signals of the jasmonate family. Analysis of the coronatine-insensitive coi1-1 Arabidopsis mutant that is also insensitive to jasmonate allowed us to identify a large number of COI1-dependent and COI1-independent wound-inducible genes. Water stress was found to contribute to the regulation of an unexpectedly large fraction of these genes. Comparing the results of mechanical wounding with damage by feeding larvae of the cabbage butterfly (Pieris rapae) resulted in very different transcript profiles. One gene was specifically induced by insect feeding but not by wounding; moreover, there was a relative lack of water stress-induced gene expression during insect feeding. These results help reveal a feeding strategy of P. rapae that may minimize the activation of a subset of water stress-inducible, defense-related genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AimWe take a comparative phylogeographical approach to assess whether three species involved in a specialized oil-rewarding pollination system (i.e. Lysimachia vulgaris and two oil-collecting bees within the genus Macropis) show congruent phylogeographical trajectories during post-glacial colonization processes. Our working hypothesis is that within specialized mutualistic interactions, where each species relies on the co-occurrence of the other for survival and/or reproduction, partners are expected to show congruent evolutionary trajectories, because they are likely to have followed parallel migration routes and to have shared glacial refugia. LocationWestern Palaearctic. MethodsOur analysis relies on the extensive sampling of 104 Western Palaearctic populations (totalling 434, 159 and 74 specimens of Lysimachiavulgaris, Macropiseuropaea and Macropisfulvipes, respectively), genotyped with amplified fragment length polymorphism. Based on this, we evaluated the regional genetic diversity (Shannon diversity and allele rarity index) and genetic structure (assessed using structure, population networks, isolation-by-distance and spatial autocorrelation metrics) of each species. Finally, we compared the general phylogeographical patterns obtained. ResultsContrary to our expectations, the analyses revealed phylogeographical signals suggesting that the investigated organisms demonstrate independent post-glacial trajectories as well as distinct contemporaneous demographic parameters, despite their mutualistic interaction. Main conclusionsThe mutualistic partners investigated here are likely to be experiencing distinct and independent evolutionary dynamics because of their contrasting life-history traits (e.g. dispersal abilities), as well as distinct hubs and migration routes. Such conditions would prevent and/or erase any signature of co-structuring of lineages in space and time. As a result, the lack of phylogeographical congruence driven by differences in life-history traits might have arisen irrespective of the three species having shared similar Pleistocene glacial refugia.