13 resultados para Distributed network protocol

em Universit


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Left unilateral spatial neglect resulting from right brain damage is characterized by loss of awareness for stimuli in the contralesional side of space, despite intact visual pathways. We examined using fMRI whether patients with neglect are more likely to consciously detect in the neglected hemifield, emotionally negative complex scenes rather than visually similar neutral pictures and if so, what neural mechanisms mediate this effect. Photographs of emotional and neutral scenes taken from the IAPS were presented in a divided visual field paradigm. As expected, the detection rate for emotional stimuli presented in the neglected field was higher than for neutral ones. Successful detection of emotional scenes as opposed to neutral stimuli in the left visual field (LVF) produced activations in the parahippocampal and anterior cingulate areas in the right hemisphere. Detection of emotional stimuli presented in the intact right visual field (RVF) activated a distributed network of structures in the left hemisphere, including anterior and posterior cingulate cortex, insula, as well as visual striate and extrastriate areas. LVF-RVF contrasts for emotional stimuli revealed activations in right and left attention related prefrontal areas whereas RVF-LVF comparison showed activations in the posterior cingulate and extrastriate visual cortex in the left hemisphere. An additional analysis contrasting detected vs. undetected emotional LVF stimuli showed involvement of left anterior cingulate, right frontal and extrastriate areas. We hypothesize that beneficial role of emotion in overcoming neglect is achieved by activation of frontal and limbic lobe networks, which provide a privileged access of emotional stimuli to attention by top-down modulation of processing in the higher-order extrastriate visual areas. Our results point to the importance of top-down regulatory role of the frontal attentional systems, which might enhance visual activations and lead to greater salience of emotional stimuli for perceptual awareness.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Volumes of data used in science and industry are growing rapidly. When researchers face the challenge of analyzing them, their format is often the first obstacle. Lack of standardized ways of exploring different data layouts requires an effort each time to solve the problem from scratch. Possibility to access data in a rich, uniform manner, e.g. using Structured Query Language (SQL) would offer expressiveness and user-friendliness. Comma-separated values (CSV) are one of the most common data storage formats. Despite its simplicity, with growing file size handling it becomes non-trivial. Importing CSVs into existing databases is time-consuming and troublesome, or even impossible if its horizontal dimension reaches thousands of columns. Most databases are optimized for handling large number of rows rather than columns, therefore, performance for datasets with non-typical layouts is often unacceptable. Other challenges include schema creation, updates and repeated data imports. To address the above-mentioned problems, I present a system for accessing very large CSV-based datasets by means of SQL. It's characterized by: "no copy" approach - data stay mostly in the CSV files; "zero configuration" - no need to specify database schema; written in C++, with boost [1], SQLite [2] and Qt [3], doesn't require installation and has very small size; query rewriting, dynamic creation of indices for appropriate columns and static data retrieval directly from CSV files ensure efficient plan execution; effortless support for millions of columns; due to per-value typing, using mixed text/numbers data is easy; very simple network protocol provides efficient interface for MATLAB and reduces implementation time for other languages. The software is available as freeware along with educational videos on its website [4]. It doesn't need any prerequisites to run, as all of the libraries are included in the distribution package. I test it against existing database solutions using a battery of benchmarks and discuss the results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Although cross-sectional diffusion tensor imaging (DTI) studies revealed significant white matter changes in mild cognitive impairment (MCI), the utility of this technique in predicting further cognitive decline is debated. Thirty-five healthy controls (HC) and 67 MCI subjects with DTI baseline data were neuropsychologically assessed at one year. Among them, there were 40 stable (sMCI; 9 single domain amnestic, 7 single domain frontal, 24 multiple domain) and 27 were progressive (pMCI; 7 single domain amnestic, 4 single domain frontal, 16 multiple domain). Fractional anisotropy (FA) and longitudinal, radial, and mean diffusivity were measured using Tract-Based Spatial Statistics. Statistics included group comparisons and individual classification of MCI cases using support vector machines (SVM). FA was significantly higher in HC compared to MCI in a distributed network including the ventral part of the corpus callosum, right temporal and frontal pathways. There were no significant group-level differences between sMCI versus pMCI or between MCI subtypes after correction for multiple comparisons. However, SVM analysis allowed for an individual classification with accuracies up to 91.4% (HC versus MCI) and 98.4% (sMCI versus pMCI). When considering the MCI subgroups separately, the minimum SVM classification accuracy for stable versus progressive cognitive decline was 97.5% in the multiple domain MCI group. SVM analysis of DTI data provided highly accurate individual classification of stable versus progressive MCI regardless of MCI subtype, indicating that this method may become an easily applicable tool for early individual detection of MCI subjects evolving to dementia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Computational anatomy with magnetic resonance imaging (MRI) is well established as a noninvasive biomarker of Alzheimer's disease (AD); however, there is less certainty about its dependency on the staging of AD. We use classical group analyses and automated machine learning classification of standard structural MRI scans to investigate AD diagnostic accuracy from the preclinical phase to clinical dementia. Longitudinal data from the Alzheimer's Disease Neuroimaging Initiative were stratified into 4 groups according to the clinical status-(1) AD patients; (2) mild cognitive impairment (MCI) converters; (3) MCI nonconverters; and (4) healthy controls-and submitted to a support vector machine. The obtained classifier was significantly above the chance level (62%) for detecting AD already 4 years before conversion from MCI. Voxel-based univariate tests confirmed the plausibility of our findings detecting a distributed network of hippocampal-temporoparietal atrophy in AD patients. We also identified a subgroup of control subjects with brain structure and cognitive changes highly similar to those observed in AD. Our results indicate that computational anatomy can detect AD substantially earlier than suggested by current models. The demonstrated differential spatial pattern of atrophy between correctly and incorrectly classified AD patients challenges the assumption of a uniform pathophysiological process underlying clinically identified AD.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Do our brains implicitly track the energetic content of the foods we see? Using electrical neuroimaging of visual evoked potentials (VEPs) we show that the human brain can rapidly discern food's energetic value, vis à vis its fat content, solely from its visual presentation. Responses to images of high-energy and low-energy food differed over two distinct time periods. The first period, starting at approximately 165 ms post-stimulus onset, followed from modulations in VEP topography and by extension in the configuration of the underlying brain network. Statistical comparison of source estimations identified differences distributed across a wide network including both posterior occipital regions and temporo-parietal cortices typically associated with object processing, and also inferior frontal cortices typically associated with decision-making. During a successive processing stage (starting at approximately 300 ms), responses differed both topographically and in terms of strength, with source estimations differing predominantly within prefrontal cortical regions implicated in reward assessment and decision-making. These effects occur orthogonally to the task that is actually being performed and suggest that reward properties such as a food's energetic content are treated rapidly and in parallel by a distributed network of brain regions involved in object categorization, reward assessment, and decision-making.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Single-trial encounters with multisensory stimuli affect both memory performance and early-latency brain responses to visual stimuli. Whether and how auditory cortices support memory processes based on single-trial multisensory learning is unknown and may differ qualitatively and quantitatively from comparable processes within visual cortices due to purported differences in memory capacities across the senses. We recorded event-related potentials (ERPs) as healthy adults (n = 18) performed a continuous recognition task in the auditory modality, discriminating initial (new) from repeated (old) sounds of environmental objects. Initial presentations were either unisensory or multisensory; the latter entailed synchronous presentation of a semantically congruent or a meaningless image. Repeated presentations were exclusively auditory, thus differing only according to the context in which the sound was initially encountered. Discrimination abilities (indexed by d') were increased for repeated sounds that were initially encountered with a semantically congruent image versus sounds initially encountered with either a meaningless or no image. Analyses of ERPs within an electrical neuroimaging framework revealed that early stages of auditory processing of repeated sounds were affected by prior single-trial multisensory contexts. These effects followed from significantly reduced activity within a distributed network, including the right superior temporal cortex, suggesting an inverse relationship between brain activity and behavioural outcome on this task. The present findings demonstrate how auditory cortices contribute to long-term effects of multisensory experiences on auditory object discrimination. We propose a new framework for the efficacy of multisensory processes to impact both current multisensory stimulus processing and unisensory discrimination abilities later in time.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract The solvability of the problem of fair exchange in a synchronous system subject to Byzantine failures is investigated in this work. The fair exchange problem arises when a group of processes are required to exchange digital items in a fair manner, which means that either each process obtains the item it was expecting or no process obtains any information on, the inputs of others. After introducing a novel specification of fair exchange that clearly separates safety and liveness, we give an overview of the difficulty of solving such a problem in the context of a fully-connected topology. On one hand, we show that no solution to fair exchange exists in the absence of an identified process that every process can trust a priori; on the other, a well-known solution to fair exchange relying on a trusted third party is recalled. These two results lead us to complete our system model with a flexible representation of the notion of trust. We then show that fair exchange is solvable if and only if a connectivity condition, named the reachable majority condition, is satisfied. The necessity of the condition is proven by an impossibility result and its sufficiency by presenting a general solution to fair exchange relying on a set of trusted processes. The focus is then turned towards a specific network topology in order to provide a fully decentralized, yet realistic, solution to fair exchange. The general solution mentioned above is optimized by reducing the computational load assumed by trusted processes as far as possible. Accordingly, our fair exchange protocol relies on trusted tamperproof modules that have limited communication abilities and are only required in key steps of the algorithm. This modular solution is then implemented in the context of a pedagogical application developed for illustrating and apprehending the complexity of fair exchange. This application, which also includes the implementation of a wide range of Byzantine behaviors, allows executions of the algorithm to be set up and monitored through a graphical display. Surprisingly, some of our results on fair exchange seem contradictory with those found in the literature of secure multiparty computation, a problem from the field of modern cryptography, although the two problems have much in common. Both problems are closely related to the notion of trusted third party, but their approaches and descriptions differ greatly. By introducing a common specification framework, a comparison is proposed in order to clarify their differences and the possible origins of the confusion between them. This leads us to introduce the problem of generalized fair computation, a generalization of fair exchange. Finally, a solution to this new problem is given by generalizing our modular solution to fair exchange

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Patients with Temporal Lobe Epilepsy (TLE) suffer from widespread subtle white matter abnormalities and abnormal functional connectivity extending beyond the affected lobe, as revealed by Diffusion Tensor MR Imaging, volumetric and functional MRI studies. Diffusion Spectrum Imaging (DSI) is a diffusion imaging technique with high angular resolution for improving the mapping of white matter pathways. In this study, we used DSI, connectivity matrices and topological measures to investigate how the alteration in structural connectivity influences whole brain structural networks. Eleven patients with right-sided TLE and hippocampal sclerosis and 18 controls underwent our DSI protocol at 3T. The cortical and subcortical grey matters were parcellated into 86 regions of interest and the connectivity between every region pair was estimated using global tractography and a connectivity matrix (the adjacency matrix of the structural network). We then compared the networks of patients and controls using topological measures. In patients, we found a higher characteristic path length and a lower clustering coefficient compared to controls. Local measures at node level of the clustering and efficiency showed a significant difference after a multiple comparison correction (Bonferroni). These significant nodes were located within as well outside the temporal lobe, and the localisation of most of them was consistent with regions known to be part of epileptic networks in TLE. Our results show altered connectivity patterns that are concordant with the mapping of functional epileptic networks in patients with TLE. Further studies are needed to establish the relevance of these findings for the propagation of epileptic activity, cognitive deficits in medial TLE and outcome of epilepsy surgery in individual patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract This thesis proposes a set of adaptive broadcast solutions and an adaptive data replication solution to support the deployment of P2P applications. P2P applications are an emerging type of distributed applications that are running on top of P2P networks. Typical P2P applications are video streaming, file sharing, etc. While interesting because they are fully distributed, P2P applications suffer from several deployment problems, due to the nature of the environment on which they perform. Indeed, defining an application on top of a P2P network often means defining an application where peers contribute resources in exchange for their ability to use the P2P application. For example, in P2P file sharing application, while the user is downloading some file, the P2P application is in parallel serving that file to other users. Such peers could have limited hardware resources, e.g., CPU, bandwidth and memory or the end-user could decide to limit the resources it dedicates to the P2P application a priori. In addition, a P2P network is typically emerged into an unreliable environment, where communication links and processes are subject to message losses and crashes, respectively. To support P2P applications, this thesis proposes a set of services that address some underlying constraints related to the nature of P2P networks. The proposed services include a set of adaptive broadcast solutions and an adaptive data replication solution that can be used as the basis of several P2P applications. Our data replication solution permits to increase availability and to reduce the communication overhead. The broadcast solutions aim, at providing a communication substrate encapsulating one of the key communication paradigms used by P2P applications: broadcast. Our broadcast solutions typically aim at offering reliability and scalability to some upper layer, be it an end-to-end P2P application or another system-level layer, such as a data replication layer. Our contributions are organized in a protocol stack made of three layers. In each layer, we propose a set of adaptive protocols that address specific constraints imposed by the environment. Each protocol is evaluated through a set of simulations. The adaptiveness aspect of our solutions relies on the fact that they take into account the constraints of the underlying system in a proactive manner. To model these constraints, we define an environment approximation algorithm allowing us to obtain an approximated view about the system or part of it. This approximated view includes the topology and the components reliability expressed in probabilistic terms. To adapt to the underlying system constraints, the proposed broadcast solutions route messages through tree overlays permitting to maximize the broadcast reliability. Here, the broadcast reliability is expressed as a function of the selected paths reliability and of the use of available resources. These resources are modeled in terms of quotas of messages translating the receiving and sending capacities at each node. To allow a deployment in a large-scale system, we take into account the available memory at processes by limiting the view they have to maintain about the system. Using this partial view, we propose three scalable broadcast algorithms, which are based on a propagation overlay that tends to the global tree overlay and adapts to some constraints of the underlying system. At a higher level, this thesis also proposes a data replication solution that is adaptive both in terms of replica placement and in terms of request routing. At the routing level, this solution takes the unreliability of the environment into account, in order to maximize reliable delivery of requests. At the replica placement level, the dynamically changing origin and frequency of read/write requests are analyzed, in order to define a set of replica that minimizes communication cost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Sitting between your past and your future doesn't mean you are in the present. Dakota Skye Complex systems science is an interdisciplinary field grouping under the same umbrella dynamical phenomena from social, natural or mathematical sciences. The emergence of a higher order organization or behavior, transcending that expected of the linear addition of the parts, is a key factor shared by all these systems. Most complex systems can be modeled as networks that represent the interactions amongst the system's components. In addition to the actual nature of the part's interactions, the intrinsic topological structure of underlying network is believed to play a crucial role in the remarkable emergent behaviors exhibited by the systems. Moreover, the topology is also a key a factor to explain the extraordinary flexibility and resilience to perturbations when applied to transmission and diffusion phenomena. In this work, we study the effect of different network structures on the performance and on the fault tolerance of systems in two different contexts. In the first part, we study cellular automata, which are a simple paradigm for distributed computation. Cellular automata are made of basic Boolean computational units, the cells; relying on simple rules and information from- the surrounding cells to perform a global task. The limited visibility of the cells can be modeled as a network, where interactions amongst cells are governed by an underlying structure, usually a regular one. In order to increase the performance of cellular automata, we chose to change its topology. We applied computational principles inspired by Darwinian evolution, called evolutionary algorithms, to alter the system's topological structure starting from either a regular or a random one. The outcome is remarkable, as the resulting topologies find themselves sharing properties of both regular and random network, and display similitudes Watts-Strogtz's small-world network found in social systems. Moreover, the performance and tolerance to probabilistic faults of our small-world like cellular automata surpasses that of regular ones. In the second part, we use the context of biological genetic regulatory networks and, in particular, Kauffman's random Boolean networks model. In some ways, this model is close to cellular automata, although is not expected to perform any task. Instead, it simulates the time-evolution of genetic regulation within living organisms under strict conditions. The original model, though very attractive by it's simplicity, suffered from important shortcomings unveiled by the recent advances in genetics and biology. We propose to use these new discoveries to improve the original model. Firstly, we have used artificial topologies believed to be closer to that of gene regulatory networks. We have also studied actual biological organisms, and used parts of their genetic regulatory networks in our models. Secondly, we have addressed the improbable full synchronicity of the event taking place on. Boolean networks and proposed a more biologically plausible cascading scheme. Finally, we tackled the actual Boolean functions of the model, i.e. the specifics of how genes activate according to the activity of upstream genes, and presented a new update function that takes into account the actual promoting and repressing effects of one gene on another. Our improved models demonstrate the expected, biologically sound, behavior of previous GRN model, yet with superior resistance to perturbations. We believe they are one step closer to the biological reality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrological models developed for extreme precipitation of PMP type are difficult to calibrate because of the scarcity of available data for these events. This article presents the process and results of calibration for a distributed hydrological model at fine scale developed for the estimation of probable maximal floods in the case of a PMP. This calibration is done on two Swiss catchments for two events of summer storms. The calculation done is concentrated on the estimation of the parameters of the model, divided in two parts. The first is necessary for the computation of flow speeds while the second is required for the determination of the initial and final infiltration capacities for each terrain type. The results, validated with the Nash equation show a good correlation between the simulated and observed flows. We also apply this model on two Romanian catchments, showing the river network and estimated flow.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This PhD thesis addresses the issue of scalable media streaming in large-scale networking environments. Multimedia streaming is one of the largest sink of network resources and this trend is still growing as testified by the success of services like Skype, Netflix, Spotify and Popcorn Time (BitTorrent-based). In traditional client-server solutions, when the number of consumers increases, the server becomes the bottleneck. To overcome this problem, the Content-Delivery Network (CDN) model was invented. In CDN model, the server copies the media content to some CDN servers, which are located in different strategic locations on the network. However, they require heavy infrastructure investment around the world, which is too expensive. Peer-to-peer (P2P) solutions are another way to achieve the same result. These solutions are naturally scalable, since each peer can act as both a receiver and a forwarder. Most of the proposed streaming solutions in P2P networks focus on routing scenarios to achieve scalability. However, these solutions cannot work properly in video-on-demand (VoD) streaming, when resources of the media server are not sufficient. Replication is a solution that can be used in these situations. This thesis specifically provides a family of replication-based media streaming protocols, which are scalable, efficient and reliable in P2P networks. First, it provides SCALESTREAM, a replication-based streaming protocol that adaptively replicates media content in different peers to increase the number of consumers that can be served in parallel. The adaptiveness aspect of this solution relies on the fact that it takes into account different constraints like bandwidth capacity of peers to decide when to add or remove replicas. SCALESTREAM routes media blocks to consumers over a tree topology, assuming a reliable network composed of homogenous peers in terms of bandwidth. Second, this thesis proposes RESTREAM, an extended version of SCALESTREAM that addresses the issues raised by unreliable networks composed of heterogeneous peers. Third, this thesis proposes EAGLEMACAW, a multiple-tree replication streaming protocol in which two distinct trees, named EAGLETREE and MACAWTREE, are built in a decentralized manner on top of an underlying mesh network. These two trees collaborate to serve consumers in an efficient and reliable manner. The EAGLETREE is in charge of improving efficiency, while the MACAWTREE guarantees reliability. Finally, this thesis provides TURBOSTREAM, a hybrid replication-based streaming protocol in which a tree overlay is built on top of a mesh overlay network. Both these overlays cover all peers of the system and collaborate to improve efficiency and low-latency in streaming media to consumers. This protocol is implemented and tested in a real networking environment using PlanetLab Europe testbed composed of peers distributed in different places in Europe.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 2001, it became evident that the domiciliary care nurses needed a tool to assist them in treating patients with chronic wounds. A protocol was therefore developed which could be used not only by the nurses but also by doctors and other health care professionals working in home care. As a parallel measure, a network of nurses specialised in wound care and available for advice and consultation was established.