17 resultados para BIOPHYSICS

em Universit


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanism of CD8 cooperation with the TCR in antigen recognition was studied on live T cells. Fluorescence correlation measurements yielded evidence of the presence of two TCR and CD8 subpopulations with different lateral diffusion rate constants. Independently, evidence for two subpopulations was derived from the experimentally observed two distinct association phases of cognate peptide bound to class I MHC (pMHC) tetramers and the T cells. The fast phase rate constant ((1.7 +/- 0.2) x 10(5) M(-1) s(-1)) was independent of examined cell type or MHC-bound peptides' structure. Its value was much faster than that of the association of soluble pMHC and TCR ((7.0 +/- 0.3) x 10(3) M(-1) s(-1)), and close to that of the association of soluble pMHC with CD8 ((1-2) x 10(5) M(-1) s(-1)). The fast binding phase disappeared when CD8-pMHC interaction was blocked by a CD8-specific mAb. The latter rate constant was slowed down approximately 10-fold after cells treatment with methyl-beta-cyclodextrin. These results suggest that the most efficient pMHC-cell association route corresponds to a fast tetramer binding to a colocalized CD8-TCR subpopulation, which apparently resides within membrane rafts: the reaction starts by pMHC association with the CD8. This markedly faster step significantly increases the probability of pMHC-TCR encounters and thereby promotes pMHC association with CD8-proximal TCR. The slow binding phase is assigned to pMHC association with a noncolocalized CD8-TCR subpopulation. Taken together with results of cytotoxicity assays, our data suggest that the colocalized, raft-associated CD8-TCR subpopulation is the one capable of inducing T-cell activation.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacterial endotoxin (lipopolysaccharide, LPS) is the major component of the outer leaflet of the outer membrane in gram-negative bacteria. During severe infections, bacteria may reach the blood circuit of humans, and endotoxins may be released from the bacteria due to cell division or cell death. In particular enterobacterial forms of LPS represent extremely strong activator molecules of the human immune system causing a rapid induction of cytokine production in monocytes and macrophages. Various mammalian blood proteins have been documented to display LPS binding activities mediating normally decreasing effects in the biological activity of LPS. In more recent studies, the essential systemic oxygen transportation protein hemoglobin (Hb) has been shown to amplify LPS-induced cytokine production on immune cells. The mechanism responsible for this effect is poorly understood. Here, we characterize the interaction of hemoglobin with LPS by using biophysical methods. The data presented, revealing the changes of the type and size of supramolecular aggregates of LPS in the presence of Hb, allow a better understanding of the hemoglobin-induced increase in bioactivity of LPS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The concept of ideal geometric configurations was recently applied to the classification and characterization of various knots. Different knots in their ideal form (i.e., the one requiring the shortest length of a constant-diameter tube to form a given knot) were shown to have an overall compactness proportional to the time-averaged compactness of thermally agitated knotted polymers forming corresponding knots. This was useful for predicting the relative speed of electrophoretic migration of different DNA knots. Here we characterize the ideal geometric configurations of catenanes (called links by mathematicians), i.e., closed curves in space that are topologically linked to each other. We demonstrate that the ideal configurations of different catenanes show interrelations very similar to those observed in the ideal configurations of knots. By analyzing literature data on electrophoretic separations of the torus-type of DNA catenanes with increasing complexity, we observed that their electrophoretic migration is roughly proportional to the overall compactness of ideal representations of the corresponding catenanes. This correlation does not apply, however, to electrophoretic migration of certain replication intermediates, believed up to now to represent the simplest torus-type catenanes. We propose, therefore, that freshly replicated circular DNA molecules, in addition to forming regular catenanes, may also form hemicatenanes.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photons participate in many atomic and molecular interactions and processes. Recent biophysical research has discovered an ultraweak radiation in biological tissues. It is now recognized that plants, animal and human cells emit this very weak biophotonic emission which can be readily measured with a sensitive photomultiplier system. UVA laser induced biophotonic emission of cultured cells was used in this report with the intention to detect biophysical changes between young and adult fibroblasts as well as between fibroblasts and keratinocytes. With suspension densities ranging from 1-8 x 106 cells/ml, it was evident that an increase of the UVA-laser-light induced photon emission intensity could be observed in young as well as adult fibroblastic cells. By the use of this method to determine ultraweak light emission, photons in cell suspensions in low volumes (100 microl) could be detected, in contrast to previous procedures using quantities up to 10 ml. Moreover, the analysis has been further refined by turning off the photomultiplier system electronically during irradiation leading to the first measurements of induced light emission in the cells after less than 10 micros instead of more than 100 milliseconds. These significant changes lead to an improvement factor up to 106 in comparison to classical detection procedures. In addition, different skin cells as fibroblasts and keratinocytes stemming from the same donor were measured using this new highly sensitive method in order to find new biophysical insight of light pathways. This is important in view to develop new strategies in biophotonics especially for use in alternative therapies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a thermally fluctuating long linear polymeric chain in a solution, the ends, from time to time, approach each other. At such an instance, the chain can be regarded as closed and thus will form a knot or rather a virtual knot. Several earlier studies of random knotting demonstrated that simpler knots show a higher occurrence for shorter random walks than do more complex knots. However, up to now there have been no rules that could be used to predict the optimal length of a random walk, i.e. the length for which a given knot reaches its highest occurrence. Using numerical simulations, we show here that a power law accurately describes the relation between the optimal lengths of random walks leading to the formation of different knots and the previously characterized lengths of ideal knots of a corresponding type.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Postsynaptic density-95/disks large/zonula occludens-1 (PDZ) domains are relatively small (80-120 residues) protein binding modules central in the organization of receptor clusters and in the association of cellular proteins. Their main function is to bind C-terminals of selected proteins that are recognized through specific amino acids in their carboxyl end. Binding is associated with a deformation of the PDZ native structure and is responsible for dynamical changes in regions not in direct contact with the target. We investigate how this deformation is related to the harmonic dynamics of the PDZ structure and show that one low-frequency collective normal mode, characterized by the concerted movements of different secondary structures, is involved in the binding process. Our results suggest that even minimal structural changes are responsible for communication between distant regions of the protein, in agreement with recent NMR experiments. Thus, PDZ domains are a very clear example of how collective normal modes are able to characterize the relation between function and dynamics of proteins, and to provide indications on the precursors of binding/unbinding events.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The membrane organization of the alpha-subunit of purified (Na+ + K+)-ATPase ((Na+ + K+)-dependent adenosine triphosphate phosphorylase, EC 3.6.1.3) and of the microsomal enzyme of the kidney of the toad Bufo marinus was compared by using controlled trypsinolysis. With both enzyme preparations, digestions performed in the presence of Na+ yielded a 73 kDa fragment and in the presence of K+ a 56 kDa, a 40 kDa and small amounts of a 83 kDa fragment from the 96 kDa alpha-subunit. In contrast to mammalian preparations (Jørgensen, P.L. (1975) Biochim. Biophys. Acta 401, 399-415), trypsinolysis of the purified amphibian enzyme led to a biphasic loss of (Na+ + K+)-ATPase activity in the presence of both Na+ and K+. These data could be correlated with an early rapid cleavage of 3 kDa from the alpha-subunit in both ionic conditions and a slower degradation of the remaining 93 kDa polypeptide. On the other hand, in the microsomal enzyme, a 3 kDa shift of the alpha-subunit could only be produced in the presence of Na+. Our data indicate that (1) purification of the amphibian enzyme with detergent does not influence the overall topology of the alpha-subunit but produces a distinct structural alteration of its N-terminus and (2) the amphibian kidney enzyme responds to cations with similar conformational transitions as the mammalian kidney enzyme. In addition, anti alpha-serum used on digested enzyme samples revealed on immunoblots that the 40 kDa fragment was better recognized than the 56 kDa fragment. It is concluded that the NH2-terminal of the alpha-subunit contains more antigenic sites than the COOH-terminal domain in agreement with the results of Farley et al. (Farley, R.A., Ochoa, G.T. and Kudrow, A. (1986) Am. J. Physiol. 250, C896-C906).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The knowledge of the relationship that links radiation dose and image quality is a prerequisite to any optimization of medical diagnostic radiology. Image quality depends, on the one hand, on the physical parameters such as contrast, resolution, and noise, and on the other hand, on characteristics of the observer that assesses the image. While the role of contrast and resolution is precisely defined and recognized, the influence of image noise is not yet fully understood. Its measurement is often based on imaging uniform test objects, even though real images contain anatomical backgrounds whose statistical nature is much different from test objects used to assess system noise. The goal of this study was to demonstrate the importance of variations in background anatomy by quantifying its effect on a series of detection tasks. Several types of mammographic backgrounds and signals were examined by psychophysical experiments in a two-alternative forced-choice detection task. According to hypotheses concerning the strategy used by the human observers, their signal to noise ratio was determined. This variable was also computed for a mathematical model based on the statistical decision theory. By comparing theoretical model and experimental results, the way that anatomical structure is perceived has been analyzed. Experiments showed that the observer's behavior was highly dependent upon both system noise and the anatomical background. The anatomy partly acts as a signal recognizable as such and partly as a pure noise that disturbs the detection process. This dual nature of the anatomy is quantified. It is shown that its effect varies according to its amplitude and the profile of the object being detected. The importance of the noisy part of the anatomy is, in some situations, much greater than the system noise. Hence, reducing the system noise by increasing the dose will not improve task performance. This observation indicates that the tradeoff between dose and image quality might be optimized by accepting a higher system noise. This could lead to a better resolution, more contrast, or less dose.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

S100A1 is a Ca(2+)-binding protein and predominantly expressed in the heart. We have generated a mouse line of S100A1 deficiency by gene trap mutagenesis to investigate the impact of S100A1 ablation on heart function. Electrocardiogram recordings revealed that after beta-adrenergic stimulation S100A1-deficient mice had prolonged QT, QTc and ST intervals and intraventricular conduction disturbances reminiscent of 2 : 1 bundle branch block. In order to identify genes affected by the loss of S100A1, we profiled the mutant and wild type cardiac transcriptomes by gene array analysis. The expression of several genes functioning to the electrical activity of the heart were found to be significantly altered. Although the default prediction would be that mRNA and protein levels are highly correlated, comprehensive immunoblot analyses of salient up- or down-regulated candidate genes of any cellular network revealed no significant changes on protein level. Taken together, we found that S100A1 deficiency results in cardiac repolarization delay and alternating ventricular conduction defects in response to sympathetic activation accompanied by a significantly different transcriptional regulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective was to design a vascular phantom compatible with digital subtraction angiography, computerized tomography angiography, ultrasound and magnetic resonance angiography (MRA). Fiducial markers were implanted at precise known locations in the phantom to facilitate identification and orientation of plane views from three-dimensional (3-D) reconstructed images. A vascular conduit connected to tubing at the extremities of the phantom ran through an agar-based gel filling it. A vessel wall in latex was included around the conduit to avoid diffusion of contrast agents. Using a lost-material casting technique based on a low melting point metal, geometries of pathological vessels were modeled. During the experimental testing, fiducial markers were detectable in all modalities without distortion. No leak of gadolinium through the vascular wall was observed on MRA after 5 hours. Moreover, no significant deformation of the vascular conduit was noted during the fabrication process (confirmed by microtome slicing along the vessel). The potential use of the phantom for calibration, rescaling, and fusion of 3-D images obtained from the different modalities as well as its use for the evaluation of intra- and inter-modality comparative studies of imaging systems are discussed. In conclusion, the vascular phantom can allow accurate calibration of radiological imaging devices based on x-ray, magnetic resonance and ultrasound and quantitative comparisons of the geometric accuracy of the vessel lumen obtained with each of these methods on a given well defined 3-D geometry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A loss in the necessary amount of sleep alters expression of genes and proteins implicated in brain plasticity, but key proteins that render neuronal circuits sensitive to sleep disturbance are unknown. We show that mild (4-6 h) sleep deprivation (SD) selectively augmented the number of NR2A subunits of NMDA receptors on postsynaptic densities of adult mouse CA1 synapses. The greater synaptic NR2A content facilitated induction of CA3-CA1 long-term depression in the theta frequency stimulation range and augmented the synaptic modification threshold. NR2A-knock-out mice maintained behavioral response to SD, including compensatory increase in post-deprivation resting time, but hippocampal synaptic plasticity was insensitive to sleep loss. After SD, the balance between synaptically activated and slowly recruited NMDA receptor pools during temporal summation was disrupted. Together, these results indicate that NR2A is obligatory for the consequences of sleep loss on hippocampal synaptic plasticity. These findings could advance pharmacological strategies aiming to sustain hippocampal function during sleep restriction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIMS: Surgical ablation procedures for treating atrial fibrillation have been shown to be highly successful. However, the ideal ablation pattern still remains to be determined. This article reports on a systematic study of the effectiveness of the performance of different ablation line patterns. METHODS AND RESULTS: This study of ablation line patterns was performed in a biophysical model of human atria by combining basic lines: (i) in the right atrium: isthmus line, line between vena cavae and appendage line and (ii) in the left atrium: several versions of pulmonary vein isolation, connection of pulmonary veins, isthmus line, and appendage line. Success rates and the presence of residual atrial flutter were documented. Basic patterns yielded conversion rates of only 10-25 and 10-55% in the right and the left atria, respectively. The best result for pulmonary vein isolation was obtained when a single closed line encompassed all veins (55%). Combination of lines in the right/left atrium only led to a success rate of 65/80%. Higher rates, up to 90-100%, could be obtained if right and left lines were combined. The inclusion of a left isthmus line was found to be essential for avoiding uncommon left atrial flutter. CONCLUSION: Some patterns studied achieved a high conversion rate, although using a smaller number of lines than those of the Maze III procedure. The biophysical atrial model is shown to be effective in the search for promising alternative ablation strategies.