46 resultados para ARCUATE NUCLEUS
em Universit
Resumo:
PURPOSE OF REVIEW: The control of glucose and energy homeostasis, including feeding behaviour, is tightly regulated by gut-derived peptidic and nonpeptidic endocrine mediators, autonomic nervous signals, as well as nutrients such as glucose. We will review recent findings on the role of the gastrointestinal tract innervation and of portal vein glucose sensors; we will review selected data on the action of gastrointestinally released hormones. RECENT FINDINGS: The involvement of mechanosensory vagal afferents in postprandial meal termination has been clarified using mouse models with selective impairments of genes required for development of mechanosensory fibres. These activate central glucogen-like peptide-1/glucogen-like peptide-2 containing ascending pathways linking the visceroceptive brainstem neurons to hypothalamic nuclei. Mucosal terminals comprise the chemosensory vagal afferents responsive to postprandially released gastrointestinal hormones. The mechanism by which the hepatoportal glucose sensor stimulates glucose utilization by muscles was demonstrated, using genetically modified mice, to be insulin-independent but to require GLUT4 and AMP-kinase. This sensor is a key site of glucogen-like peptide-1 action and plays a critical role in triggering first phase insulin secretion. PeptideYY and ghrelin target intracerebral receptors as they are bidirectionally transported across the blood brain barrier. The anorectic functions of peripherally released peptideYY may however be mediated both via vagal afferents and intracerebral Y2 receptors in the brainstem and arcuate nucleus. SUMMARY: These recent findings demonstrate that the use of improved anatomical and physiological techniques and animal models with targeted gene modifications lead to an improved understanding of the complex role of gastrointestinal signals in the control of energy homeostasis.
Resumo:
The hypothalamic damage induced by neonatal treatment with monosodium l-glutamate (MSG) induces several metabolic abnormalities, resulting in a rat hyperleptinemic-hyperadipose phenotype. This study was conducted to explore the impact of the neonatal MSG treatment, in the adult (120 days old) female rat on: (a) the in vivo and in vitro mineralocorticoid responses to ACTH and angiotensin II (AII); (b) the effect of leptin on ACTH- and AII-stimulated mineralocorticoid secretions by isolated corticoadrenal cells; and (c) abdominal adiposity characteristics. Our data indicate that, compared with age-matched controls, MSG rats displayed: (1) enhanced and reduced mineralocorticoid responses to ACTH and AII treatments, respectively, effects observed in both in vivo and in vitro conditions; (2) adrenal refractoriness to the inhibitory effect of exogenous leptin on ACTH-stimulated aldosterone output by isolated adrenocortical cells; and (3) distorted omental adiposity morphology and function. This study supports that the adult hyperleptinemic MSG female rat is characterized by enhanced ACTH-driven mineralocorticoid function, impaired adrenal leptin sensitivity, and disrupted abdominal adiposity function. MSG rats could counteract undesirable effects of glucocorticoid excess, by developing a reduced AII-driven mineralocorticoid function. Thus, chronic hyperleptinemia could play a protective role against ACTH-mediated allostatic loads in the adrenal leptin resistant, MSG female rat phenotype.
Resumo:
Dans ce travail de thèse, nous avons étudié les mécanismes d'action de deux médicaments connus pour diminuer la prise alimentaire et pondérale : la metformine et le telmisartan. Nous avons dans un premier temps étudié les effets de la metformine, un antidiabétique oral connu pour avoir des effets anorexigènes. Les mécanismes hypothalamiques potentiellement impliqués dans la modulation de la prise alimentaire par la metformine ont été étudiés dans trois groupes de rats : un groupe de rats obèses (DIO), un groupe de rats résistants à l'obésité (DR) ainsi qu'un groupe contrôle. A la fin de la période de prise pondérale de six mois, les rats DIO avaient des taux d'ARNm de NPY hypothalamique plus élevés que leurs congénères résistants et contrôles. Chez les DIO ainsi que chez les DR un traitement par metformine induit une baisse significative de la prise alimentaire accompagnée par une baisse du poids. Nous avons pu d'autre part constater que la perte de poids obtenue par un traitement de metformine était corrélée aux taux circulants de leptine avant le traitement. Cet effet s'accompagne d'une augmentation de l'expression du récepteur ObRb au niveau hypothalamique. Dans un second temps, nous avons étudié les effets du telmisartan, un inhibiteur du récepteur à l'angiotensine II ayant une activité agoniste partielle PPARγ. L'influence du telmisartan associé à la pioglitazone sur la prise alimentaire et pondérale a été examinée en étudiant leur effet sur les neuropeptides hypothalamiques responsables du contrôle de la prise alimentaire. Quatre groupes de souris soumises à un régime riche en graisse ont été formés : un groupe placebo, un groupe pioglitazone, un groupe telmisartan et un groupe pioglitazone-telmisartan. Le telmisartan a aboli la prise pondérale induite par une diète riche en graisse ou par un traitement de pioglitazone. Cette diminution était corrélée à une baisse de la prise alimentaire et de l'expression hypothalamique d'AgRP. Cette étude confirme donc les effets anorexigènes du telmisartan et démontre pour la première fois le rôle fonctionnel du telmisartan sur l'expression hypothalamique d'AgRP. English Abstract : In this work, we investigated the effect of two drugs known to have interessants effects on food intake and body weight. First we investigated the hypothalamic mechanisms potentially implicated in the modulation of feeding by the glucose-lowering drug metformin in three different groups of animals: diet-induced obese (DIO) and diet-resistant (DR) male rats as well as lean controls (CT). At the end of the high fat diet period, despite higher leptin levels, DIO rats had higher levels of hypothalamic NPY expression than DR or CT, suggesting a central leptin resistance. In DIO but also in DR rats, metformin treatment induced significant reductions of food intake accompanied by decreases in body weight. Interestingly, the weight loss achieved by metformin was correlated with pre-treatment plasma leptin levels. This effect was paralleled by a stimulation of the expression of the leptin receptor gene (ObRb) in the arcuate nucleus. Next we investigated the antihypertensive drug Telmisartan, an angiotensin II receptor blocker with PPARγ agonistic properties. The influence of telmisartan, of pioglitazone and of their association on weight gain and food intake was assessed by studying their effects on neuro-endocrine mediators involved in food intake. Mice were fed a high fat diet, weightmatched and randomized in four treatment groups: vehicle, pioglitazone, telmisartan and pioglitazone-telmisartan. Telmisartan treatment was found to abolish weight and fat gain in either vehicle or pioglitazone treated mice. This effect was accompanied by a decrease in food intake. The hypothalamic expression of the agouti-related protein and plasma leptin levels show also a decrease under metformin treatment. This study confirms the anorexigenic effects of telmisartan in mice fed a high fat diet, and suggests for the first time a functional role of telmisartan on hypothalamic orexigenic agouti-related protein regulation.
Resumo:
Metformin demonstrates anorectic effects in vivo and inhibits neuropeptide Y expression in cultured hypothalamic neurons. Here we investigated the mechanisms implicated in the modulation of feeding by metformin in animals rendered obese by long-term high-fat diet (diet-induced obesity [DIO]) and in animals resistant to obesity (diet resistant [DR]). Male Long-Evans rats were kept on normal chow feeding (controls) or on high-fat diet (DIO, DR) for 6 months. Afterward, rats were treated 14 days with metformin (75 mg/kg) or isotonic sodium chloride solution and killed. Energy efficiency, metabolic parameters, and gene expression were analyzed at the end of the high-fat diet period and after 14 days of metformin treatment. At the end of the high-fat diet period, despite higher leptin levels, DIO rats had higher levels of hypothalamic neuropeptide Y expression than DR or control rats, suggesting a central leptin resistance. In DIO but also in DR rats, metformin treatment induced significant reductions of food intake accompanied by decreases in body weight. Interestingly, the weight loss achieved by metformin was correlated with pretreatment plasma leptin levels. This effect was paralleled by a stimulation of the expression of the leptin receptor gene (ObRb) in the arcuate nucleus. These data identify the hypothalamic ObRb as a gene modulated after metformin treatment and suggest that the anorectic effects of the drug are potentially mediated via an increase in the central sensitivity to leptin. Thus, they provide a rationale for novel therapeutic approaches associating leptin and metformin in the treatment of obesity.
Resumo:
Recent studies demonstrated a role for hypothalamic insulin and leptin action in the regulation of glucose homeostasis. This regulation involves proopiomelanocortin (POMC) neurons because suppression of phosphatidyl inositol 3-kinase (PI3K) signaling in these neurons blunts the acute effects of insulin and leptin on POMC neuronal activity. In the current study, we investigated whether disruption of PI3K signaling in POMC neurons alters normal glucose homeostasis using mouse models designed to both increase and decrease PI3K-mediated signaling in these neurons. We found that deleting p85alpha alone induced resistance to diet-induced obesity. In contrast, deletion of the p110alpha catalytic subunit of PI3K led to increased weight gain and adipose tissue along with reduced energy expenditure. Independent of these effects, increased PI3K activity in POMC neurons improved insulin sensitivity, whereas decreased PI3K signaling resulted in impaired glucose regulation. These studies show that activity of the PI3K pathway in POMC neurons is involved in not only normal energy regulation but also glucose homeostasis.
Resumo:
Glucose is an important signal that regulates glucose and energy homeostasis but its precise physiological role and signaling mechanism in the brain are still uncompletely understood. Over the recent years we have investigated the possibility that central glucose sensing may share functional similarities with glucose sensing by pancreatic beta-cells, in particular a requirement for the expression of the glucose transporter Glut2. Using mice with genetic inactivation of Glut2, but rescued pancreatic beta-cell function by transgenic expression of a glucose transporter, we have established that extrapancreatic glucose sensors are involved: i) in the control of glucagon secretion in response to hypoglycemia, ii) in the control of feeding and iii) of energy expenditure. We have more recently shown that central Glut2-dependent glucose sensors are involved in the regulation of NPY and POMC expression by arcuate nucleus neurons and that the sensitivity to leptin of these neurons is enhanced by Glut2-dependent glucose sensors. Using mice with genetic tagging of Glut2-expressing cells, we determined that the NPY and POMC neurons did not express Glut2 but were connected to Glut2 expressing neurons located most probably outside of the arcuate nucleus. We are now defining the electrophysiological behavior of these Glut2 expressing neurons. Our data provide an initial map of glucose sensing neurons expressing Glut2 and link these neurons with the control of specific physiological function.
Resumo:
BACKGROUND/AIM: We have reported that neonatal treatment with monosodium L-glutamate (MSG), which causes damage to the arcuate nucleus, leads to severe hyperleptinemia and reduced adrenal leptin receptor (ob-Rb) expression in adulthood. As a result, rats given MSG neonatally display corticoadrenal leptin-resistance, a defect that is overridden by normalization of corticoadrenal hyperfunction. The aim of the present study was to determine whether negative energy conditions could correct corticoadrenal cell dysfunction in rats given MSG neonatally. METHODS: Normal (CTR) and MSG-treated female rats were subjected to food removal for 1-5 days, or prolonged (24-61 days) food restriction (FR). Plasma levels of several biomarkers and in vitro corticoadrenal function were evaluated following starvation or FR. RESULTS: Fasting for 1-5 days reduced plasma leptin levels in CTR and MSG rats, compared to levels in the respective groups fed ad libitum(p < 0.05), but adrenal leptin-resistance was unchanged. With prolonged FR, isolated adrenal cells from MSG rats became sensitive to leptin, which lowered ACTH-induced glucocorticoid release. This restoration of leptin response was associated with normalization of adrenal ob-Rb gene expression. CONCLUSION: Dietary restriction in some leptin-resistant obese phenotypes may normalize adrenocortical function.
Resumo:
The physiological contribution of glucose in thermoregulation is not completely established nor whether this control may involve a regulation of the melanocortin pathway. Here, we assessed thermoregulation and leptin sensitivity of hypothalamic arcuate neurons in mice with inactivation of glucose transporter type 2 (Glut2)-dependent glucose sensing. Mice with inactivation of Glut2-dependent glucose sensors are cold intolerant and show increased susceptibility to food deprivation-induced torpor and abnormal hypothermic response to intracerebroventricular administration of 2-deoxy-d-glucose compared to control mice. This is associated with a defect in regulated expression of brown adipose tissue uncoupling protein I and iodothyronine deiodinase II and with a decreased leptin sensitivity of neuropeptide Y (NPY) and proopiomelanocortin (POMC) neurons, as observed during the unfed-to-refed transition or following i.p. leptin injection. Sites of central Glut-2 expression were identified by a genetic tagging approach and revealed that glucose-sensitive neurons were present in the lateral hypothalamus, the dorsal vagal complex, and the basal medulla but not in the arcuate nucleus. NPY and POMC neurons were, however, connected to nerve terminals from Glut2-expressing neurons. Thus, our data suggest that glucose controls thermoregulation and the leptin sensitivity of NPY and POMC neurons through activation of Glut2-dependent glucose-sensing neurons located outside of the arcuate nucleus.
Resumo:
The aim of the present study was to characterize the discharge properties of single neurons in the dorsal nucleus of the lateral lemniscus (DNLL) of the rat. In the absence of acoustic stimulation, two types of spontaneous discharge patterns were observed: units tended to fire in a bursting or in a nonbursting mode. The distribution of units in the DNLL based on spontaneous firing rate followed a rostrocaudal gradient: units with high spontaneous rates were most commonly located in the rostral part of the DNLL, whereas in the caudal part units had lower spontaneous discharge rates. The most common response pattern of DNLL units to 200 ms binaural noise bursts contained a prominent onset response followed by a lower but steady-state response and an inhibitory response in the early-off period. Thresholds of response to noise bursts were on average higher for DNLL units than for units recorded in the inferior colliculus under the same experimental conditions. The DNLL units were arranged according to a mediolateral sensitivity gradient with the lowest threshold units in the most lateral part of the nucleus. In the rat, as in other mammals, the most common DNLL binaural input type was an excitatory response to contralateral ear stimulation and inhibitory response to ipsilateral ear stimulation (EI type). Pure tone bursts were in general a more effective stimulus compared to noise bursts. Best frequency (BF) was established for 97 DNLL units and plotted according to their spatial location. The DNLL exhibits a loose tonotopic organization, where there is a concentric pattern with high BF units located in the most dorsal and ventral parts of the DNLL and lower BF units in the middle part of the nucleus.
Resumo:
Glucose-sensing neurons in the brainstem participate in the regulation of energy homeostasis but have been poorly characterized because of the lack of specific markers to identify them. Here we show that GLUT2-expressing neurons of the nucleus of the tractus solitarius form a distinct population of hypoglycemia-activated neurons. Their response to low glucose is mediated by reduced intracellular glucose metabolism, increased AMP-activated protein kinase activity, and closure of leak K(+) channels. These are GABAergic neurons that send projections to the vagal motor nucleus. Light-induced stimulation of channelrhodospin-expressing GLUT2 neurons in vivo led to increased parasympathetic nerve firing and glucagon secretion. Thus GLUT2 neurons of the nucleus tractus solitarius link hypoglycemia detection to counterregulatory response. These results may help identify the cause of hypoglycemia-associated autonomic failure, a major threat in the insulin treatment of diabetes.
Resumo:
Nuclei bind yeast vacuoles via nucleus-vacuole (NV) junctions. Under nutrient restriction, NV junctions invaginate and release vesicles filled with nuclear material into vacuoles, resulting in piecemeal microautophagy of the nucleus (PMN). We show that the electrochemical gradient across the vacuolar membrane promotes invagination of NV junctions. Existing invaginations persist independently of the gradient, but final release of PMN vesicles requires again V-ATPase activity. We find that NV junctions form a diffusion barrier on the vacuolar membrane that excludes V-ATPase but is enriched in the VTC complex and accessible to other membrane-integral proteins. V-ATPase exclusion depends on the NV junction proteins Nvj1p,Vac8p, and the electrochemical gradient. It also depends on factors of lipid metabolism, such as the oxysterol binding protein Osh1p and the enoyl-CoA reductase Tsc13p, which are enriched in NV junctions, and on Lag1p and Fen1p. Our observations suggest that NV junctions form in two separable steps: Nvj1p and Vac8p suffice to establish contact between the two membranes. The electrochemical potential and lipid-modifying enzymes are needed to establish the vacuolar diffusion barrier, invaginate NV junctions, and form PMN vesicles.
Resumo:
The subthalamic nucleus (STN) is a small, glutamatergic nucleus situated in the diencephalon. A critical component of normal motor function, it has become a key target for deep brain stimulation in the treatment of Parkinson's disease. Animal studies have demonstrated the existence of three functional sub-zones but these have never been shown conclusively in humans. In this work, a data driven method with diffusion weighted imaging demonstrated that three distinct clusters exist within the human STN based on brain connectivity profiles. The STN was successfully sub-parcellated into these regions, demonstrating good correspondence with that described in the animal literature. The local connectivity of each sub-region supported the hypothesis of bilateral limbic, associative and motor regions occupying the anterior, mid and posterior portions of the nucleus respectively. This study is the first to achieve in-vivo, non-invasive anatomical parcellation of the human STN into three anatomical zones within normal diagnostic scan times, which has important future implications for deep brain stimulation surgery.
Resumo:
INTRODUCTION: Gamma Knife surgery (GKS) is a non-invasive neurosurgical stereotactic procedure, increasingly used as an alternative to open functional procedures. This includes targeting of the ventro-intermediate nucleus of the thalamus (e.g. Vim) for tremor. We currently perform an indirect targeting, as the Vim is not visible on current 3Tesla MRI acquisitions. Our objective was to enhance anatomic imaging (aiming at refining the precision of anatomic target selection by direct visualisation) in patients treated for tremor with Vim GKS, by using high field 7T MRI. MATERIALS AND METHODSH: Five young healthy subjects were scanned on 3 (T1-w and diffusion tensor imaging) and 7T (high-resolution susceptibility weighted images (SWI)) MRI in Lausanne. All images were further integrated for the first time into the Gamma Plan Software(®) (Elekta Instruments, AB, Sweden) and co-registered (with T1 was a reference). A simulation of targeting of the Vim was done using various methods on the 3T images. Furthermore, a correlation with the position of the found target with the 7T SWI was performed. The atlas of Morel et al. (Zurich, CH) was used to confirm the findings on a detailed analysis inside/outside the Gamma Plan. RESULTS: The use of SWI provided us with a superior resolution and an improved image contrast within the basal ganglia. This allowed visualization and direct delineation of some subgroups of thalamic nuclei in vivo, including the Vim. The position of the target, as assessed on 3T, perfectly matched with the supposed one of the Vim on the SWI. Furthermore, a 3-dimensional model of the Vim-target area was created on the basis of the obtained images. CONCLUSION: This is the first report of the integration of SWI high field MRI into the LGP, aiming at the improvement of targeting validation of the Vim in tremor. The anatomical correlation between the direct visualization on 7T and the current targeting methods on 3T (e.g. quadrilatere of Guyot, histological atlases) seems to show a very good anatomical matching. Further studies are needed to validate this technique, both by improving the accuracy of the targeting of the Vim (potentially also other thalamic nuclei) and to perform clinical assessment.
Resumo:
Subthalamic nucleus deep brain stimulation (STN-DBS) is a recognized treatment for advanced and severe forms of Parkinson's Disease. The procedure improves motor signs and often allows a reduction of the medication. The impact of the procedure on cognitive and neuropsychiatric signs of the disease is more debated and there is an international consensus for the need of a multidisciplinary evaluation of patients undergoing such programs, including a neuropsychiatric assessment. We present a review of the literature as well as the experience at our centre focused on the short and long term outcome on mood following STN-DBS.
Resumo:
The orexin/hypocretin (Orx/Hcrt) system has long been considered to regulate a wide range of physiological processes, including feeding, energy metabolism, and arousal. More recently, concordant observations have demonstrated an important role for these peptides in the reinforcing properties of most drugs of abuse. Orx/Hcrt neurons arise in the lateral hypothalamus (LH) and project to all brain structures implicated in the regulation of arousal, stress, and reward. Although Orx/Hcrt neurons have been shown to massively project to the paraventricular nucleus of the thalamus (PVT), only recent evidence suggested that the PVT may be a key relay of Orx/Hcrt-coded reward-related communication between the LH and both the ventral and dorsal striatum. While this thalamic region was not thought to be part of the "drug addiction circuitry," an increasing amount of evidence demonstrated that the PVT-particularly PVT Orx/Hcrt transmission-was implicated in the modulation of reward function in general and several aspects of drug-directed behaviors in particular. The present review discusses recent findings that suggest that maladaptive recruitment of PVT Orx/Hcrt signaling by drugs of abuse may promote persistent compulsive drug-seeking behavior following a period of protracted abstinence and as such may represent a relevant target for understanding the long-term vulnerability to drug relapse after withdrawal.