116 resultados para zeros of Gram polynomials
em Université de Lausanne, Switzerland
Resumo:
The cytokine macrophage migration inhibitory factor (MIF) is an important component of the early proinflammatory response of the innate immune system. However, the antimicrobial defense mechanisms mediated by MIF remain fairly mysterious. In the present study, we examined whether MIF controls bacterial uptake and clearance by professional phagocytes, using wild-type and MIF-deficient macrophages. MIF deficiency did not affect bacterial phagocytosis, but it strongly impaired the killing of gram-negative bacteria by macrophages and host defenses against gram-negative bacterial infection, as shown by increased mortality in a Klebsiella pneumonia model. Consistent with MIF's regulatory role of Toll-like 4 expression in macrophages, MIF-deficient cells stimulated with lipopolysaccharide or Escherichia coli exhibited reduced nuclear factor κB activity and tumor necrosis factor (TNF) production. Addition of recombinant MIF or TNF corrected the killing defect of MIF-deficient macrophages. Together, these data show that MIF is a key mediator of host responses against gram-negative bacteria, acting in part via a modulation of bacterial killing by macrophages.
Resumo:
High-resolution structural information on optimally preserved bacterial cells can be obtained with cryo-electron microscopy of vitreous sections. With the help of this technique, the existence of a periplasmic space between the plasma membrane and the thick peptidoglycan layer of the gram-positive bacteria Bacillus subtilis and Staphylococcus aureus was recently shown. This raises questions about the mode of polymerization of peptidoglycan. In the present study, we report the structure of the cell envelope of three gram-positive bacteria (B. subtilis, Streptococcus gordonii, and Enterococcus gallinarum). In the three cases, a previously undescribed granular layer adjacent to the plasma membrane is found in the periplasmic space. In order to better understand how nascent peptidoglycan is incorporated into the mature peptidoglycan, we investigated cellular regions known to represent the sites of cell wall production. Each of these sites possesses a specific structure. We propose a hypothetic model of peptidoglycan polymerization that accommodates these differences: peptidoglycan precursors could be exported from the cytoplasm to the periplasmic space, where they could diffuse until they would interact with the interface between the granular layer and the thick peptidoglycan layer. They could then polymerize with mature peptidoglycan. We report cytoplasmic structures at the E. gallinarum septum that could be interpreted as cytoskeletal elements driving cell division (FtsZ ring). Although immunoelectron microscopy and fluorescence microscopy studies have demonstrated the septal and cytoplasmic localization of FtsZ, direct visualization of in situ FtsZ filaments has not been obtained in any electron microscopy study of fixed and dehydrated bacteria.
Resumo:
Arthrobacter chlorophenolicus A6 is a Gram-positive, 4-chlorophenol-degrading soil bacterium that was recently shown to be an effective colonizer of plant leaf surfaces. The genetic basis for this phyllosphere competency is unknown. In this paper, we describe the genome-wide expression profile of A.chlorophenolicus on leaves of common bean (Phaseolus vulgaris) compared with growth on agar surfaces. In phyllosphere-grown cells, we found elevated expression of several genes known to contribute to epiphytic fitness, for example those involved in nutrient acquisition, attachment, stress response and horizontal gene transfer. A surprising result was the leaf-induced expression of a subset of the so-called cph genes for the degradation of 4-chlorophenol. This subset encodes the conversion of the phenolic compound hydroquinone to 3-oxoadipate, and was shown to be induced not only by 4-chlorophenol but also hydroquinone, its glycosylated derivative arbutin, and phenol. Small amounts of hydroquinone, but not arbutin or phenol, were detected in leaf surface washes of P.vulgaris by gas chromatography-mass spectrometry. Our findings illustrate the utility of genomics approaches for exploration and improved understanding of a microbial habitat. Also, they highlight the potential for phyllosphere-based priming of bacteria to stimulate pollutant degradation, which holds promise for the application of phylloremediation.
Resumo:
Résumé La structure, ou l'architecture, des êtres vivants définit le cadre dans lequel la physique de la vie s'accomplit. La connaissance de cette structure dans ses moindres détails est un but essentiel de la biologie. Son étude est toutefois entravée par des limitations techniques. Malgré son potentiel théorique, la microscopie électronique n'atteint pas une résolution atomique lorsqu'elle est appliquée ä la matièxe biologique. Cela est dû en grande partie au fait qu'elle contient beaucoup d'eau qui ne résiste pas au vide du microscope. Elle doit donc être déshydratée avant d'être introduite dans un microscope conventionnel. Des artéfacts d'agrégation en découlent inévitablement. La cryo-microscopie électronique des sections vitreuses (CEMOVIS) a ëté développée afin de résoudre cela. Les spécimens sont vitrifiés, c.-à-d. que leur eau est immobilisée sans cristalliser par le froid. Ils sont ensuite coupés en sections ultrafines et celles-ci sont observées à basse température. Les spécimens sont donc observés sous forme hydratée et non fixée; ils sont proches de leur état natif. Durant longtemps, CEMOVIS était très difficile à exécuter mais ce n'est plus le cas. Durant cette thèse, CEMOVIS a été appliqué à différents spécimens. La synapse du système nerveux central a été étudiée. La présence dans la fente synaptique d'une forte densité de molécules organisées de manière périodique a été démontrée. Des particules luminales ont été trouvées dans Ies microtubules cérébraux. Les microtubules ont servi d'objets-test et ont permis de démontrer que des détails moléculaires de l'ordre du nm sont préservés. La compréhension de la structure de l'enveloppe cellulaire des bactéries Grampositives aété améliorée. Nos observations ont abouti à l'élaboration d'un nouveau modèle hypothétique de la synthèse de la paroi. Nous avons aussi focalisé notre attention sur le nucléoïde bactérien et cela a suscité un modèle de la fonction des différents états structuraux du nucléoïde. En conclusion, cette thèse a démontré que CEMOVIS est une excellente méthode poux étudier la structure d'échantillons biologiques à haute résolution. L'étude de la structure de divers aspects des êtres vivants a évoqué des hypothèses quant à la compréhension de leur fonctionnement. Summary The structure, or the architecture, of living beings defines the framework in which the physics of life takes place. Understanding it in its finest details is an essential goal of biology. Its study is however hampered by technical limitations. Despite its theoretical potential, electron microscopy cannot resolve individual atoms in biological matter. This is in great part due to the fact. that it contains a lot of water that cannot stand the vacuum of the microscope. It must therefore be dehydrated before being introduced in a conventional mìcroscope. Aggregation artefacts unavoidably happen. Cryo-electron microscopy of vitreous sections (CEMOVIS) has been developed to solve this problem. Specimens are vitrified, i.e. they are rapidly cooled and their water is immobilised without crystallising by the cold. They are then. sectioned in ultrathin slices, which are observed at low temperatures. Specimens are therefore observed in hydrated and unfixed form; they are close to their native state. For a long time, CEMOVIS was extremely tedious but this is not the case anymore. During this thesis, CEMOVIS was applied to different specimens. Synapse of central nervous system was studied. A high density of periodically-organised molecules was shown in the synaptic cleft. Luminal particles were found in brain microtubules. Microtubules, used as test specimen, permitted to demonstrate that molecular details of the order of nm .are preserved. The understanding of the structure of cell envelope of Gram-positive bacteria was improved. Our observations led to the elaboration of a new hypothetic model of cell wall synthesis. We also focused our attention on bacterial nucleoids and this also gave rise to a functional model of nucleoid structural states. In conclusion, this thesis demonstrated that CEMOVIS is an excellent method for studying the structure of bìologìcal specimens at high resolution. The study of the structure of various aspects of living beings evoked hypothesis for their functioning.
Resumo:
Humans live in symbiosis with 10(14) commensal bacteria among which >99% resides in their gastrointestinal tract. The molecular bases pertaining to the interaction between mucosal secretory IgA (SIgA) and bacteria residing in the intestine are not known. Previous studies have demonstrated that commensals are naturally coated by SIgA in the gut lumen. Thus, understanding how natural SIgA interacts with commensal bacteria can provide new clues on its multiple functions at mucosal surfaces. Using fluorescently labeled, nonspecific SIgA or secretory component (SC), we visualized by confocal microscopy the interaction with various commensal bacteria, including Lactobacillus, Bifidobacteria, Escherichia coli, and Bacteroides strains. These experiments revealed that the interaction between SIgA and commensal bacteria involves Fab- and Fc-independent structural motifs, featuring SC as a crucial partner. Removal of glycans present on free SC or bound in SIgA resulted in a drastic drop in the interaction with Gram-positive bacteria, indicating the essential role of carbohydrates in the process. In contrast, poor binding of Gram-positive bacteria by control IgG was observed. The interaction with Gram-negative bacteria was preserved whatever the molecular form of protein partner used, suggesting the involvement of different binding motifs. Purified SIgA and SC from either mouse hybridoma cells or human colostrum exhibited identical patterns of recognition for Gram-positive bacteria, emphasizing conserved plasticity between species. Thus, sugar-mediated binding of commensals by SIgA highlights the currently underappreciated role of glycans in mediating the interaction between a highly diverse microbiota and the mucosal immune system.
Resumo:
Background. Early identification of pathogens from blood cultures using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry may optimize the choice of empirical antibiotic therapy in the setting of bloodstream infections. We aimed to assess the impact of this new technology on the use of antibiotic treatment in patients with gram-negative bacteremia. Methods. We conducted a prospective observational study from January to December 2010 to evaluate the sequential and separate impacts of Gram stain reporting and MALDI-TOF bacterial identification performed on blood culture pellets in patients with gram-negative bacteremia. The primary outcome was the impact of MALDI-TOF on empirical antibiotic choice. Results. Among 202 episodes of gram-negative bacteremia, Gram stain reporting had an impact in 42 cases (20.8%). MALDI-TOF identification led to a modification of empirical therapy in 71 of all 202 cases (35.1%), and in 16 of 27 cases (59.3%) of monomicrobial bacteremia caused by AmpC-producing Enterobacteriaceae. The most frequently observed impact was an early appropriate broadening of the antibiotic spectrum in 31 of 71 cases (43.7%). In total, 143 of 165 episodes (86.7%) of monomicrobial bacteremia were correctly identified at genus level by MALDI-TOF. Conclusions. In a low prevalence area for extended spectrum betalactamases (ESBL) and multiresistant gram-negative bacteria, MALDI-TOF performed on blood culture pellets had an impact on the clinical management of 35.1% of all gram-negative bacteremia cases, demonstrating a greater impact than Gram stain reporting. Thus, MALDI-TOF could become a vital second step beside Gram stain in guiding the empirical treatment of patients with bloodstream infection.
Resumo:
The sensor kinase GacS and the response regulator GacA are members of a two-component system that is present in a wide variety of gram-negative bacteria and has been studied mainly in enteric bacteria and fluorescent pseudomonads. The GacS/GacA system controls the production of secondary metabolites and extracellular enzymes involved in pathogenicity to plants and animals, biocontrol of soilborne plant diseases, ecological fitness, or tolerance to stress. A current model proposes that GacS senses a still-unknown signal and activates, via a phosphorelay mechanism, the GacA transcription regulator, which in turn triggers the expression of target genes. The GacS protein belongs to the unorthodox sensor kinases, characterized by an autophosphorylation, a receiver, and an output domain. The periplasmic loop domain of GacS is poorly conserved in diverse bacteria. Thus, a common signal interacting with this domain would be unexpected. Based on a comparison with the transcriptional regulator NarL, a secondary structure can be predicted for the GacA sensor kinases. Certain genes whose expression is regulated by the GacS/GacA system are regulated in parallel by the small RNA binding protein RsmA (CsrA) at a posttranscriptional level. It is suggested that the GacS/GacA system operates a switch between primary and secondary metabolism, with a major involvement of posttranscriptional control mechanisms.
Resumo:
Innate immunity reacts to conserved bacterial molecules. The outermost lipopolysaccharide (LPS) of Gram-negative organisms is highly inflammatory. It activates responsive cells via specific CD14 and toll-like receptor-4 (TLR4) surface receptor and co-receptors. Gram-positive bacteria do not contain LPS, but carry surface teichoic acids, lipoteichoic acids and peptidoglycan instead. Among these, the thick peptidoglycan is the most conserved. It also triggers cytokine release via CD14, but uses the TLR2 co-receptor instead of TLR4 used by LPS. Moreover, whole peptidoglycan is 1000-fold less active than LPS in a weight-to-weight ratio. This suggests either that it is not important for inflammation, or that only part of it is reactive while the rest acts as ballast. Biochemical dissection of Staphylococcus aureus and Streptococcus pneumoniae cell walls indicates that the second assumption is correct. Long, soluble peptidoglycan chains (approximately 125 kDa) are poorly active. Hydrolysing these chains to their minimal unit (2 sugars and a stem peptide) completely abrogates inflammation. Enzymatic dissection of the pneumococcal wall generated a mixture of highly active fragments, constituted of trimeric stem peptides, and poorly active fragments, constituted of simple monomers and dimers or highly polymerized structures. Hence, the optimal constraint for activation might be 3 cross-linked stem peptides. The importance of structural constraint was demonstrated in additional studies. For example, replacing the first L-alanine in the stem peptide with a D-alanine totally abrogated inflammation in experimental meningitis. Likewise, modifying the D-alanine decorations of lipoteichoic acids with L-alanine, or deacylating them from their diacylglycerol lipid anchor also decreased the inflammatory response. Thus, although considered as a broad-spectrum pattern-recognizing system, innate immunity can detect very subtle differences in Gram-positive walls. This high specificity underlines the importance of using well-characterized microbial material in investigating the system.
Resumo:
Cellular responses to LPS, the major lipid component of the outer membrane of Gram-negative bacteria, are enhanced markedly by the LPS-binding protein (LBP), a plasma protein that transfers LPS to the cell surface CD14 present on cells of the myeloid lineage. LBP has been shown previously to potentiate the host response to LPS. However, experiments performed in mice with a disruption of the LBP gene have yielded discordant results. Whereas one study showed that LBP knockout mice were resistant to endotoxemia, another study did not confirm an important role for LBP in the response of mice challenged in vivo with low doses of LPS. Consequently, we generated rat mAbs to murine LBP to investigate further the contribution of LBP in experimental endotoxemia. Three classes of mAbs were obtained. Class 1 mAbs blocked the binding of LPS to LBP; class 2 mAbs blocked the binding of LPS/LBP complexes to CD14; class 3 mAbs bound LBP but did not suppress LBP activity. In vivo, class 1 and class 2 mAbs suppressed LPS-induced TNF production and protected mice from lethal endotoxemia. These results show that the neutralization of LBP accomplished by blocking either the binding of LPS to LBP or the binding of LPS/LBP complexes to CD14 protects the host from LPS-induced toxicity, confirming that LBP is a critical component of innate immunity.
Resumo:
Functional characterization of transformed or natively present bacterial virulence proteins can be achieved employing various model systems. A prerequisite is to verify the correct expression of the transformed protein or the presence of the native protein in the microbe. Traditionally, antibodies are raised against the protein or a peptide thereof, followed by Western blot analysis or by fluorescence-activated cell sorting. Alternatively, the protein-coding gene can be fused with a downstream reporter gene, the expression of which reports the simultaneous expression of the upstream recombinant protein. Although being powerful, these methods are time consuming, especially when multiple proteins must be assessed. Here we describe a novel way to validate the expression of Gram-positive surface proteins covalently attached to the peptidoglycan. Eighteen out of the 21 known LPXTG-motif carrying cell wall-associated proteins of Staphylococcus aureus were cloned in Lactoccocus lactis either alone, in combinations or as truncated forms, and their correct expression was assessed by liquid chromatography coupled to mass spectrometry (LC-MS). The method is rapid, sensitive and precise. It can identify multiple proteins in transformed constructs without the time and cost needed for raising and testing multiple sets of antibodies.
Resumo:
OBJECTIVE: To elucidate the diagnostic accuracy of granulocyte colony-stimulating factor (G-CSF), interleukin-8 (IL-8), and interleukin-1 receptor antagonist (IL-1ra) in identifying patients with sepsis among critically ill pediatric patients with suspected infection. DESIGN AND SETTING: Nested case-control study in a multidisciplinary neonatal and pediatric intensive care unit (PICU) PATIENTS: PICU patients during a 12-month period with suspected infection, and plasma available from the time of clinical suspicion (254 episodes, 190 patients). MEASUREMENTS AND RESULTS: Plasma levels of G-CSF, IL-8, and IL-1ra. Episodes classified on the basis of clinical and bacteriological findings into: culture-confirmed sepsis, probable sepsis, localized infection, viral infection, and no infection. Plasma levels were significantly higher in episodes of culture-confirmed sepsis than in episodes with ruled-out infection. The area under the receiver operating characteristic curve was higher for IL-8 and G-CSF than for IL-1ra. Combining IL-8 and G-CSF improved the diagnostic performance, particularly as to the detection of Gram-negative sepsis. Sensitivity was low (<50%) in detecting Staphylococcus epidermidis bacteremia or localized infections. CONCLUSIONS: In this heterogeneous population of critically ill children with suspected infection, a model combining plasma levels of IL-8 and G-CSF identified patients with sepsis. Negative results do not rule out S. epidermidis bacteremia or locally confined infectious processes. The model requires validation in an independent data-set.
Resumo:
Lipopolysaccharides (LPS, endotoxins) are main constituents of the outer membranes of Gram-negative bacteria, with the 'endotoxic principle' lipid A anchoring LPS into the membrane. When LPS is removed from the bacteria by the action of the immune system or simply by cell dividing, it may interact strongly with immunocompetent cells such as mononuclear cells. This interaction may lead, depending on the LPS concentration, to beneficial (at low) or pathophysiological (at high concentrations) reactions, the latter frequently causing the septic shock syndrome. There is a variety of endogenous LPS-binding proteins. To this class belong lactoferrin (LF) and hemoglobin (Hb), which have been shown to suppress and enhance the LPS-induced cytokine secretion in mononuclear cells, respectively. To elucidate the interaction mechanisms of endotoxins with these proteins, we have investigated in an infrared reflection-absorption spectroscopy (IRRAS) study the interaction of LPS or lipid A monolayers at the air/water interface with LF and Hb proteins, injected into the aqueous subphase. The data are clearly indicative of completely different interaction mechanisms of the endotoxins with the proteins, with the LF acting only at the LPS backbone, whereas Hb incorporates into the lipid monolayer. These data allow an understanding of the different reactivities in the biomedicinal systems.
Resumo:
The increased incidence over the past decade of bloodstream infections (BSIs) caused by gram-positive bacteria, particularly methicillin-resistant Staphylococcus aureus, highlights the critical need for a consistent approach to therapy. However, there is currently no international consensus on the diagnosis and management of gram-positive BSIs. The Clinical Consensus Conference on Gram-Positive Bloodstream Infections was convened as a session at the 9th International Symposium on Modern Concepts in Endocarditis and Cardiovascular Infections held in 2007. Participants discussed various aspects of the practical treatment of patients who present with gram-positive BSI, including therapeutic options for patients with BSIs of undefined origin, the selection of appropriate empirical therapy, and treatment of complicated and uncomplicated BSIs. The opinions of participants about these key issues are reflected in this article.
Resumo:
The conserved two-component regulatory system GacS/GacA determines the expression of extracellular products and virulence factors in a variety of Gram-negative bacteria. In the biocontrol strain CHA0 of Pseudomonas fluorescens, the response regulator GacA is essential for the synthesis of extracellular protease (AprA) and secondary metabolites including hydrogen cyanide. GacA was found to exert its control on the hydrogen cyanide biosynthetic genes (hcnABC) and on the aprA gene indirectly via a posttranscriptional mechanism. Expression of a translational hcnA'-'lacZ fusion was GacA-dependent whereas a transcriptional hcnA-lacZ fusion was not. A distinct recognition site overlapping with the ribosome binding site appears to be primordial for GacA-steered regulation. GacA-dependence could be conferred to the Escherichia coli lacZ mRNA by a 3-bp substitution in the ribosome binding site. The gene coding for the global translational repressor RsmA of P. fluorescens was cloned. RsmA overexpression mimicked partial loss of GacA function and involved the same recognition site, suggesting that RsmA is a downstream regulatory element of the GacA control cascade. Mutational inactivation of the chromosomal rsmA gene partially suppressed a gacS defect. Thus, a central, GacA-dependent switch from primary to secondary metabolism may operate at the level of translation.
Resumo:
The peptidoglycan of Gram-positive bacteria is known to trigger cytokine release from peripheral blood mononuclear cells (PBMCs). However, it requires 100-1000 times more Gram-positive peptidoglycan than Gram-negative lipopolysaccharide to release the same amounts of cytokines from target cells. Thus, either peptidoglycan is poorly active or only part of it is required for PBMC activation. To test this hypothesis, purified Streptococcus pneumoniae walls were digested with their major autolysin N-acetylmuramoyl-L-alanine amidase, and/or muramidase. Solubilized walls were separated by reverse phase high pressure chromatography. Individual fractions were tested for their PBMC-stimulating activity, and their composition was determined. Soluble components had a Mr between 600 and 1500. These primarily comprised stem peptides cross-linked to various extents. Simple stem peptides (Mr <750) were 10-fold less active than undigested peptidoglycan. In contrast, tripeptides (Mr >1000) were >/=100-fold more potent than the native material. One dipeptide (inactive) and two tripeptides (active) were confirmed by post-source decay analysis. Complex branched peptides represented </=2% of the total material, but their activity (w/w) was almost equal to that of LPS. This is the first observation suggesting that peptidoglycan stem peptides carry high tumor necrosis factor-stimulating activity. These types of structures are conserved among Gram-positive bacteria and will provide new material to help elucidate the mechanism of peptidoglycan-induced inflammation.