44 resultados para wind and floating motion

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To investigate the effect of incremental increases in intraocular straylight on threshold measurements made by three modern forms of perimetry: Standard Automated Perimetry (SAP) using Octopus (Dynamic, G-Pattern), Pulsar Perimetry (PP) (TOP, 66 points) and the Moorfields Motion Displacement Test (MDT) (WEBS, 32 points).Methods: Four healthy young observers were recruited (mean age 26yrs [25yrs, 28yrs]), refractive correction [+2 D, -4.25D]). Five white opacity filters (WOF), each scattering light by different amounts were used to create incremental increases in intraocular straylight (IS). Resultant IS values were measured with each WOF and at baseline (no WOF) for each subject using a C-Quant Straylight Meter (Oculus, Wetzlar, Germany). A 25 yr old has an IS value of ~0.85 log(s). An increase of 40% in IS to 1.2log(s) corresponds to the physiological value of a 70yr old. Each WOFs created an increase in IS between 10-150% from baseline, ranging from effects similar to normal aging to those found with considerable cataract. Each subject underwent 6 test sessions over a 2-week period; each session consisted of the 3 perimetric tests using one of the five WOFs and baseline (both instrument and filter were randomised).Results: The reduction in sensitivity from baseline was calculated. A two-way ANOVA on mean change in threshold (where subjects were treated as rows in the block and each increment in fog filters was treated as column) was used to examine the effect of incremental increases in straylight. Both SAP (p<0.001) and Pulsar (p<0.001) were significantly affected by increases in straylight. The MDT (p=0.35) remained comparatively robust to increases in straylight.Conclusions: The Moorfields MDT measurement of threshold is robust to effects of additional straylight as compared to SAP and PP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To examine the relationship of functional measurements with structural measures. Methods: 146 eyes of 83 test subjects underwent Heidelberg Retinal Tomography (HRTIII) (disc area<2.43, mphsd<40), and perimetry testing with Octopus (SAP; Dynamic), Pulsar (PP; TOP) and Moorfields MDT (ESTA). Glaucoma was defined as progressive structural or functional loss (20 eyes). Perimetry test points were grouped into 6 sectors based on the estimated optic nerve head angle into which the associated nerve fiber bundle enters (Garway-Heath map). Perimetry summary measures (PSM) (MD SAP/ MD PP/ PTD MDT) were calculated from the average total deviation of each measured threshold from the normal for each sector. We calculated the 95% significance level of the sectorial PSM from the respective normative data. We calculated the percentage agreement with group1 (G1), healthy on HRT and within normal perimetric limits, and group 2 (G2), abnormal on HRT and outside normal perimetric limits. We also examined the relationship of PSM and rim area (RA) in those sectors classified as abnormal by MRA (Moorfields Regression Analysis) of HRT. Results: The mean age was 65 (range= [37, 89]). The global sensitivity versus specificity of each instrument in detecting glaucomatous eyes was: MDT 80% vs. 88%, SAP 80% vs. 80%, PP 70% vs. 89% and HRT 80% vs. 79%. Highest percentage agreement of HRT (respectively G1, G2, sector) with PSM were MDT (89%, 57%, nasal superior), SAP (83%, 74%, temporal superior), PP (74%, 63%, nasal superior). Globally percentage agreement (respectively G1, G2) was MDT (92%, 28%), SAP (87%, 40%) and PP (77%, 49%). Linear regression showed there was no significant trend globally associating RA and PSM. However, sectorally the supero-nasal sector had a statistically significant (p<0.001) trend with each instrument, the associated r2 coefficients are (MDT 0.38 SAP 0.56 and PP 0.39). Conclusions: There were no significant differences in global sensitivity or specificity between instruments. Structure-function relationships varied significantly between instruments and were consistently strongest supero-nasally. Further studies are required to investigate these relationships in detail.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To compare the performance Glaucoma Quality of Life-15 (GQL-15) Questionnaire, intraocular pressure measurement (IOP Goldmann tonometry) and a measure of visual field loss using Moorfields Motion Displacement Test (MDT) in detecting glaucomatous eyes from a self referred population. Methods: The GQL-15 has been suggested to correlate with visual disability and psychophysical measures of visual function in glaucoma patients. The Moorfields MDT is a multi location perimetry test with 32 white line stimuli presented on a grey background on a standard laptop computer. Each stimulus is displaced between computer frames to give the illusion of "apparent motion". Participants (N=312, 90% older than 45 years; 20.5% family history of glaucoma) self referred to an advertised World Glaucoma Day (March 2009) Jules Gonin Eye Hospital, Lausanne Switzerland. Participants underwent a clinical exam (IOP, slit lamp, angle and disc examination by a general ophthalmologist), 90% completed a GQL-15 questionnaire and over 50% completed a MDT test in both eyes. Those who were classified as abnormal on one or more of the following (IOP >21 mmHg/ GQL-15 score >20/ MDT score >2/ clinical exam) underwent a follow up clinical examination by a glaucoma specialist including imaging and threshold perimetry. After the second examination subjects were classified as "healthy"(H), "glaucoma suspect" (GS) (ocular hypertension and/or suspicious disc, angle closure with SD) or "glaucomatous" (G). Results: One hundred and ten subjects completed all 4 initial examinations; of these 69 were referred to complete the 2nd examination and were classified as; 8 G, 24 GS, and 37 H. MDT detected 7/8 G, and 7/24 GS, with false referral rate of 3.8%. IOP detected 2/8 G and 8/24 GS, with false referral rate of 8.9%. GQL-15 detected 4/8 G, 16/24 GS with a false referral rate of 42%. Conclusions: In this sample of participants attending a self referral glaucoma detection event, the MDT performed significantly better than the GQL-15 and IOP in discriminating glaucomatous patients from healthy subjects. Further studies are required to assess the potential of the MDT as a glaucoma screening tool.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diffusion-weighting in magnetic resonance imaging (MRI) increases the sensitivity to molecular Brownian motion, providing insight in the micro-environment of the underlying tissue types and structures. At the same time, the diffusion weighting renders the scans sensitive to other motion, including bulk patient motion. Typically, several image volumes are needed to extract diffusion information, inducing also inter-volume motion susceptibility. Bulk motion is more likely during long acquisitions, as they appear in diffusion tensor, diffusion spectrum and q-ball imaging. Image registration methods are successfully used to correct for bulk motion in other MRI time series, but their performance in diffusion-weighted MRI is limited since diffusion weighting introduces strong signal and contrast changes between serial image volumes. In this work, we combine the capability of free induction decay (FID) navigators, providing information on object motion, with image registration methodology to prospectively--or optionally retrospectively--correct for motion in diffusion imaging of the human brain. Eight healthy subjects were instructed to perform small-scale voluntary head motion during clinical diffusion tensor imaging acquisitions. The implemented motion detection based on FID navigator signals is processed in real-time and provided an excellent detection performance of voluntary motion patterns even at a sub-millimetre scale (sensitivity≥92%, specificity>98%). Motion detection triggered an additional image volume acquisition with b=0 s/mm2 which was subsequently co-registered to a reference volume. In the prospective correction scenario, the calculated motion-parameters were applied to perform a real-time update of the gradient coordinate system to correct for the head movement. Quantitative analysis revealed that the motion correction implementation is capable to correct head motion in diffusion-weighted MRI to a level comparable to scans without voluntary head motion. The results indicate the potential of this method to improve image quality in diffusion-weighted MRI, a concept that can also be applied when highest diffusion weightings are performed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To examine the impact of spatial resolution and respiratory motion on the ability to accurately measure atherosclerotic plaque burden and to visually identify atherosclerotic plaque composition. MATERIALS AND METHODS: Numerical simulations of the Bloch equations and vessel wall phantom studies were performed for different spatial resolutions by incrementally increasing the field of view. In addition, respiratory motion was simulated based on a measured physiologic breathing pattern. RESULTS: While a spatial resolution of > or = 6 pixels across the wall does not result in significant errors, a resolution of < or = 4 pixels across the wall leads to an overestimation of > 20%. Using a double-inversion T2-weighted turbo spin echo sequence, a resolution of 1 pixel across equally thick tissue layers (fibrous cap, lipid, smooth muscle) and a respiratory motion correction precision (gating window) of three times the thickness of the tissue layer allow for characterization of the different coronary wall components. CONCLUSIONS: We found that measurements in low-resolution black blood images tend to overestimate vessel wall area and underestimate lumen area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To investigate the accuracy of 4 clinical instruments in the detection of glaucomatous damage. Methods: 102 eyes of 55 test subjects (Age mean = 66.5yrs, range = [39; 89]) underwent Heidelberg Retinal Tomography (HRTIII), (disc area<2.43); and standard automated perimetry (SAP) using Octopus (Dynamic); Pulsar (TOP); and Moorfields Motion Displacement Test (MDT) (ESTA strategy). Eyes were separated into three groups 1) Healthy (H): IOP<21mmHg and healthy discs (clinical examination), 39 subjects, 78 eyes; 2) Glaucoma suspect (GS): Suspicious discs (clinical examination), 12 subjects, 15 eyes; 3) Glaucoma (G): progressive structural or functional loss, 14 subjects, 20 eyes. Clinical diagnostic precision was examined using the cut-off associated with the p<5% normative limit of MD (Octopus/Pulsar), PTD (MDT) and MRA (HRT) analysis. The sensitivity, specificity and accuracy were calculated for each instrument. Results: See table Conclusions: Despite the advantage of defining glaucoma suspects using clinical optic disc examination, the HRT did not yield significantly higher accuracy than functional measures. HRT, MDT and Octopus SAP yielded higher accuracy than Pulsar perimetry, although results did not reach statistical significance. Further studies are required to investigate the structure-function correlations between these instruments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Free induction decay (FID) navigators were found to qualitatively detect rigid-body head movements, yet it is unknown to what extent they can provide quantitative motion estimates. Here, we acquired FID navigators at different sampling rates and simultaneously measured head movements using a highly accurate optical motion tracking system. This strategy allowed us to estimate the accuracy and precision of FID navigators for quantification of rigid-body head movements. Five subjects were scanned with a 32-channel head coil array on a clinical 3T MR scanner during several resting and guided head movement periods. For each subject we trained a linear regression model based on FID navigator and optical motion tracking signals. FID-based motion model accuracy and precision was evaluated using cross-validation. FID-based prediction of rigid-body head motion was found to be with a mean translational and rotational error of 0.14±0.21 mm and 0.08±0.13(°) , respectively. Robust model training with sub-millimeter and sub-degree accuracy could be achieved using 100 data points with motion magnitudes of ±2 mm and ±1(°) for translation and rotation. The obtained linear models appeared to be subject-specific as inter-subject application of a "universal" FID-based motion model resulted in poor prediction accuracy. The results show that substantial rigid-body motion information is encoded in FID navigator signal time courses. Although, the applied method currently requires the simultaneous acquisition of FID signals and optical tracking data, the findings suggest that multi-channel FID navigators have a potential to complement existing tracking technologies for accurate rigid-body motion detection and correction in MRI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biological traits that are advantageous under specific ecological conditions should be present in a large proportion of the species within an ecosystem, where those specific conditions prevail. As climatic conditions change, the frequency of certain traits in plant communities is expected to change with increasing altitude. We examined patterns of change for 13 traits in 120 exhaustive inventories of plants along five altitudinal transects (520-3100 m a.s.l.) in grasslands and in forests in western Switzerland. The traits selected for study represented the occupation of space, photosynthesis, reproduction and dispersal. For each plot, the mean trait values or the proportions of the trait states were weighted by species cover and examined in relation to the first axis of a PCA based on local climatic conditions. With increasing altitude in grasslands, we observed a decrease in anemophily and an increase in entomophily complemented by possible selfing; a decrease in diaspores with appendages adapted to ectozoochory, linked to a decrease in achenes and an increase in capsules. In lowlands, pollination and dispersal are ensured by wind and animals. However, with increasing altitude, insects are mostly responsible for pollination, and wind becomes the main natural dispersal vector. Some traits showed a particularly marked change in the alpine belt (e.g., the increase of capsules and the decrease of achenes), confirming that this belt concentrates particularly stressful conditions to plant growth and reproduction (e.g. cold, short growing season) that constrain plants to a limited number of strategies. One adaptation to this stress is to limit investment in dispersal by producing capsules with numerous, tiny seeds that have appendages limited to narrow wings. Forests displayed many of the trends observed in grasslands but with a reduced variability that is likely due to a shorter altitudinal gradient.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The processing of biological motion is a critical, everyday task performed with remarkable efficiency by human sensory systems. Interest in this ability has focused to a large extent on biological motion processing in the visual modality (see, for example, Cutting, J. E., Moore, C., & Morrison, R. (1988). Masking the motions of human gait. Perception and Psychophysics, 44(4), 339-347). In naturalistic settings, however, it is often the case that biological motion is defined by input to more than one sensory modality. For this reason, here in a series of experiments we investigate behavioural correlates of multisensory, in particular audiovisual, integration in the processing of biological motion cues. More specifically, using a new psychophysical paradigm we investigate the effect of suprathreshold auditory motion on perceptions of visually defined biological motion. Unlike data from previous studies investigating audiovisual integration in linear motion processing [Meyer, G. F. & Wuerger, S. M. (2001). Cross-modal integration of auditory and visual motion signals. Neuroreport, 12(11), 2557-2560; Wuerger, S. M., Hofbauer, M., & Meyer, G. F. (2003). The integration of auditory and motion signals at threshold. Perception and Psychophysics, 65(8), 1188-1196; Alais, D. & Burr, D. (2004). No direction-specific bimodal facilitation for audiovisual motion detection. Cognitive Brain Research, 19, 185-194], we report the existence of direction-selective effects: relative to control (stationary) auditory conditions, auditory motion in the same direction as the visually defined biological motion target increased its detectability, whereas auditory motion in the opposite direction had the inverse effect. Our data suggest these effects do not arise through general shifts in visuo-spatial attention, but instead are a consequence of motion-sensitive, direction-tuned integration mechanisms that are, if not unique to biological visual motion, at least not common to all types of visual motion. Based on these data and evidence from neurophysiological and neuroimaging studies we discuss the neural mechanisms likely to underlie this effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: MR tissue tagging allows the noninvasive assessment of the locally and temporally resolved motion pattern of the left ventricle. Alterations in cardiac torsion and diastolic relaxation of the left ventricle were studied in patients with aortic stenosis and were compared with those of healthy control subjects and championship rowers with physiological volume-overload hypertrophy. METHODS AND RESULTS: Twelve aortic stenosis patients, 11 healthy control subjects with normal left ventricular function, and 11 world-championship rowers were investigated for systolic and diastolic heart wall motion on a basal and an apical level of the myocardium. Systolic torsion and untwisting during diastole were examined by use of a novel tagging technique (CSPAMM) that provides access to systolic and diastolic motion data. In the healthy heart, the left ventricle performs a systolic wringing motion, with a counterclockwise rotation at the apex and a clockwise rotation at the base. Apical untwisting precedes diastolic filling. In the athlete's heart, torsion and untwisting remain unchanged compared with those of the control subjects. In aortic stenosis patients, torsion is significantly increased and diastolic apical untwisting is prolonged compared with those of control subjects or athletes. CONCLUSIONS: Torsional behavior as observed in pressure- and volume-overloaded hearts is consistent with current theoretical findings. A delayed diastolic untwisting in the pressure-overloaded hearts of the patients may contribute to a tendency toward diastolic dysfunction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heart failure has been divided into several different forms depending on etiology, clinical course and pathophysiology of left ventricular (LV) dysfunction. Systolic and diastolic dysfunction are characterized by a reduced cardiac output with normal (= diastolic dysfunction) or depressed (= systolic dysfunction) LV pump function. New diagnostic techniques such as magnetic resonance imaging (MRI) allow to determine noninvasively LV 3D motion by labelling specific myocardial regions (= myocardial "tagging") with a rectangular or radial grid. From the deformation of this grid rotational and translational motion of the heart can be derived. A "wringing" motion of the left ventricle has been described during systole which includes a clockwise rotation at the base and a counterclockwise rotation at the apex. During diastole, an "untwisting" motion has been demonstrated. In the normal heart, diastolic "untwisting" occurs primarily during isovolumic relaxation, analogous to the systolic "wringing" which takes place mainly during isovolumic contraction. A prolongation of the "untwisting" motion was found in the hypertrophied (aortic stenosis) and hibernating myocardium. Thus, heart failure is associated with profound alterations in the mechanical function of the heart which are manifested by changes in systolic "wringing" and diastolic "untwisting" motion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Diastolic dysfunction with delayed relaxation and abnormal passive elastic properties has been described in patients with severe pressure overload hypertrophy. The purpose of this study was to evaluate the time course of rotational motion of the left ventricle in patients with aortic valve stenosis using myocardial tagging. METHODS: Myocardial tagging is a non-invasive method based on magnetic resonance which makes it possible to label ('tag') specific myocardial regions. From the motion of the tag's cardiac rotation, radial displacement and translational motion can be determined. In 12 controls and 13 patients with severe aortic valve stenosis systolic and diastolic wall motion was assessed in an apical and basal short axis plane. RESULTS: The normal left ventricle performs a systolic wringing motion around the ventricular long axis with clockwise rotation at the base (-4.4+/-1.6 degrees) and counter-clockwise rotation at the apex (+6.8+/-2.5 degrees) when viewed from the apex. During early diastole an untwisting motion can be observed which precedes diastolic filling. In patients with aortic valve stenosis systolic rotation is reduced at the base (-2.4+/-2.0 degrees; P<0.01) but increased at the apex (+12.0+/-6.0 degrees; P<0.05). Diastolic untwisting is delayed and prolonged with a decrease in normalized rotation velocity (-6.9+/-1.1 s(-1)) when compared to controls (-10.7+/-2.2 s(-1); P<0.001). Maximal systolic torsion is 8.0+/-2.1 degrees in controls and 14.1+/-6.4 degrees (P<0.01) in patients with aortic valve stenosis. CONCLUSIONS: Left ventricular pressure overload hypertrophy is associated with a reduction in basal and an increase in apical rotation resulting in increased torsion of the ventricle. Diastolic untwisting is delayed and prolonged. This may explain the occurrence of diastolic dysfunction in patients with severe pressure overload hypertrophy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evidence from neuropsychological and activation studies (Clarke et al., 2oo0, Maeder et al., 2000) suggests that sound recognitionand localisation are processed by two anatomically and functionally distinct cortical networks. We report here on a case of a patientthat had an interruption of auditory information and we show: i) the effects of this interruption on cortical auditory processing; ii)the effect of the workload on activation pattern.A 36 year old man suffered from a small left mesencephalic haemotrhage, due to cavernous angioma; the let% inferior colliculuswas resected in the surgical approach of the vascular malformation. In the acute stage, the patient complained of auditoryhallucinations and of auditory loss in right ear, while tonal audiometry was normal. At 12 months, auditory recognition, auditorylocalisation (assessed by lTD and IID cues) and auditory motion perception were normal (Clarke et al., 2000), while verbal dichoticlistening was deficient on the right side.Sound recognition and sound localisation activation patterns were investigated with fMRI, using a passive and an activeparadigm. In normal subjects, distinct cortical networks were involved in sound recognition and localisation, both in passive andactive paradigm (Maeder et al., 2OOOa, 2000b).Passive listening of environmental and spatial stimuli as compared to rest strongly activated right auditory cortex, but failed toactivate left primary auditory cortex. The specialised networks for sound recognition and localisation could not be visual&d onthe right and only minimally on the left convexity. A very different activation pattern was obtained in the active condition wherea motor response was required. Workload not only increased the activation of the right auditory cortex, but also allowed theactivation of the left primary auditory cortex. The specialised networks for sound recognition and localisation were almostcompletely present in both hemispheres.These results show that increasing the workload can i) help to recruit cortical region in the auditory deafferented hemisphere;and ii) lead to processing auditory information within specific cortical networks.References:Clarke et al. (2000). Neuropsychologia 38: 797-807.Mae.der et al. (2OOOa), Neuroimage 11: S52.Maeder et al. (2OOOb), Neuroimage 11: S33