206 resultados para wide genome sequencing

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genotyping and molecular characterization of drug resistance mechanisms in Mycobacterium leprae enables disease transmission and drug resistance trends to be monitored. In the present study, we performed genome-wide analysis of Airaku-3, a multidrug-resistant strain with an unknown mechanism of resistance to rifampicin. We identified 12 unique non-synonymous single-nucleotide polymorphisms (SNPs) including two in the transporter-encoding ctpC and ctpI genes. In addition, two SNPs were found that improve the resolution of SNP-based genotyping, particularly for Venezuelan and South East Asian strains of M. leprae.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recent advances in sequencing technologies have given all microbiology laboratories access to whole genome sequencing. Providing that tools for the automated analysis of sequence data and databases for associated meta-data are developed, whole genome sequencing will become a routine tool for large clinical microbiology laboratories. Indeed, the continuing reduction in sequencing costs and the shortening of the 'time to result' makes it an attractive strategy in both research and diagnostics. Here, we review how high-throughput sequencing is revolutionizing clinical microbiology and the promise that it still holds. We discuss major applications, which include: (i) identification of target DNA sequences and antigens to rapidly develop diagnostic tools; (ii) precise strain identification for epidemiological typing and pathogen monitoring during outbreaks; and (iii) investigation of strain properties, such as the presence of antibiotic resistance or virulence factors. In addition, recent developments in comparative metagenomics and single-cell sequencing offer the prospect of a better understanding of complex microbial communities at the global and individual levels, providing a new perspective for understanding host-pathogen interactions. Being a high-resolution tool, high-throughput sequencing will increasingly influence diagnostics, epidemiology, risk management, and patient care.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We performed whole genome sequencing in 16 unrelated patients with autosomal recessive retinitis pigmentosa (ARRP), a disease characterized by progressive retinal degeneration and caused by mutations in over 50 genes, in search of pathogenic DNA variants. Eight patients were from North America, whereas eight were Japanese, a population for which ARRP seems to have different genetic drivers. Using a specific workflow, we assessed both the coding and noncoding regions of the human genome, including the evaluation of highly polymorphic SNPs, structural and copy number variations, as well as 69 control genomes sequenced by the same procedures. We detected homozygous or compound heterozygous mutations in 7 genes associated with ARRP (USH2A, RDH12, CNGB1, EYS, PDE6B, DFNB31, and CERKL) in eight patients, three Japanese and five Americans. Fourteen of the 16 mutant alleles identified were previously unknown. Among these, there was a 2.3-kb deletion in USH2A and an inverted duplication of ∼446 kb in EYS, which would have likely escaped conventional screening techniques or exome sequencing. Moreover, in another Japanese patient, we identified a homozygous frameshift (p.L206fs), absent in more than 2,500 chromosomes from ethnically matched controls, in the ciliary gene NEK2, encoding a serine/threonine-protein kinase. Inactivation of this gene in zebrafish induced retinal photoreceptor defects that were rescued by human NEK2 mRNA. In addition to identifying a previously undescribed ARRP gene, our study highlights the importance of rare structural DNA variations in Mendelian diseases and advocates the need for screening approaches that transcend the analysis of the coding sequences of the human genome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genes underlying mutant phenotypes can be isolated by combining marker discovery, genetic mapping and resequencing, but a more straightforward strategy for mapping mutations would be the direct comparison of mutant and wild-type genomes. Applying such an approach, however, is hampered by the need for reference sequences and by mutational loads that confound the unambiguous identification of causal mutations. Here we introduce NIKS (needle in the k-stack), a reference-free algorithm based on comparing k-mers in whole-genome sequencing data for precise discovery of homozygous mutations. We applied NIKS to eight mutants induced in nonreference rice cultivars and to two mutants of the nonmodel species Arabis alpina. In both species, comparing pooled F2 individuals selected for mutant phenotypes revealed small sets of mutations including the causal changes. Moreover, comparing M3 seedlings of two allelic mutants unambiguously identified the causal gene. Thus, for any species amenable to mutagenesis, NIKS enables forward genetics without requiring segregating populations, genetic maps and reference sequences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Taphrina deformans is a fungus responsible for peach leaf curl, an important plant disease. It is phylogenetically assigned to the Taphrinomycotina subphylum, which includes the fission yeast and the mammalian pathogens of the genus Pneumocystis. We describe here the genome of T. deformans in the light of its dual plant-saprophytic/plant-parasitic lifestyle. The 13.3-Mb genome contains few identifiable repeated elements (ca. 1.5%) and a relatively high GC content (49.5%). A total of 5,735 protein-coding genes were identified, among which 83% share similarities with other fungi. Adaptation to the plant host seems reflected in the genome, since the genome carries genes involved in plant cell wall degradation (e.g., cellulases and cutinases), secondary metabolism, the hallmark glyoxylate cycle, detoxification, and sterol biosynthesis, as well as genes involved in the biosynthesis of plant hormones. Genes involved in lipid metabolism may play a role in its virulence. Several locus candidates for putative MAT cassettes and sex-related genes akin to those of Schizosaccharomyces pombe were identified. A mating-type-switching mechanism similar to that found in ascomycetous yeasts could be in effect. Taken together, the findings are consistent with the alternate saprophytic and parasitic-pathogenic lifestyles of T. deformans. IMPORTANCE: Peach leaf curl is an important plant disease which causes significant losses of fruit production. We report here the genome sequence of the causative agent of the disease, the fungus Taphrina deformans. The genome carries characteristic genes that are important for the plant infection process. These include (i) proteases that allow degradation of the plant tissues; (ii) secondary metabolites which are products favoring interaction of the fungus with the environment, including the host; (iii) hormones that are responsible for the symptom of severely distorted leaves on the host; and (iv) drug detoxification enzymes that confer resistance to fungicides. The availability of the genome allows the design of new drug targets as well as the elaboration of specific management strategies to fight the disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Determination of the precise composition and variation of microbiota in cystic fibrosis lungs is crucial since chronic inflammation due to microorganisms leads to lung damage and ultimately, death. However, this constitutes a major technical challenge. Culturing of microorganisms does not provide a complete representation of a microbiota, even when using culturomics (high-throughput culture). So far, only PCR-based metagenomics have been investigated. However, these methods are biased towards certain microbial groups, and suffer from uncertain quantification of the different microbial domains. We have explored whole genome sequencing (WGS) using the Illumina high-throughput technology applied directly to DNA extracted from sputa obtained from two cystic fibrosis patients. To detect all microorganism groups, we used four procedures for DNA extraction, each with a different lysis protocol. We avoided biases due to whole DNA amplification thanks to the high efficiency of current Illumina technology. Phylogenomic classification of the reads by three different methods produced similar results. Our results suggest that WGS provides, in a single analysis, a better qualitative and quantitative assessment of microbiota compositions than cultures and PCRs. WGS identified a high quantity of Haemophilus spp. (patient 1) or Staphylococcus spp. plus Streptococcus spp. (patient 2) together with low amounts of anaerobic (Veillonella, Prevotella, Fusobacterium) and aerobic bacteria (Gemella, Moraxella, Granulicatella). WGS suggested that fungal members represented very low proportions of the microbiota, which were detected by cultures and PCRs because of their selectivity. The future increase of reads' sizes and decrease in cost should ensure the usefulness of WGS for the characterisation of microbiota.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The past decade has seen the emergence of next-generation sequencing (NGS) technologies, which have revolutionized the field of human molecular genetics. With NGS, significant portions of the human genome can now be assessed by direct sequence analysis, highlighting normal and pathological variants of our DNA. Recent advances have also allowed the sequencing of complete genomes, by a method referred to as whole genome sequencing (WGS). In this work, we review the use of WGS in medical genetics, with specific emphasis on the benefits and the disadvantages of this technique for detecting genomic alterations leading to Mendelian human diseases and to cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the availability of new generation sequencing technologies, bacterial genome projects have undergone a major boost. Still, chromosome completion needs a costly and time-consuming gap closure, especially when containing highly repetitive elements. However, incomplete genome data may be sufficiently informative to derive the pursued information. For emerging pathogens, i.e. newly identified pathogens, lack of release of genome data during gap closure stage is clearly medically counterproductive. We thus investigated the feasibility of a dirty genome approach, i.e. the release of unfinished genome sequences to develop serological diagnostic tools. We showed that almost the whole genome sequence of the emerging pathogen Parachlamydia acanthamoebae was retrieved even with relatively short reads from Genome Sequencer 20 and Solexa. The bacterial proteome was analyzed to select immunogenic proteins, which were then expressed and used to elaborate the first steps of an ELISA. This work constitutes the proof of principle for a dirty genome approach, i.e. the use of unfinished genome sequences of pathogenic bacteria, coupled with proteomics to rapidly identify new immunogenic proteins useful to develop in the future specific diagnostic tests such as ELISA, immunohistochemistry and direct antigen detection. Although applied here to an emerging pathogen, this combined dirty genome sequencing/proteomic approach may be used for any pathogen for which better diagnostics are needed. These genome sequences may also be very useful to develop DNA based diagnostic tests. All these diagnostic tools will allow further evaluations of the pathogenic potential of this obligate intracellular bacterium.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

AbstractThe Chlamydiales order is an important bacterial phylum that comprises some of the most successful human pathogens such as Chlamydia trachomatis, the leading infectious cause of blindness worldwide. Since some years, several new bacteria related to Chlamydia have been discovered in clinical or environmental samples and might represent emerging pathogens. The genome sequencing of classical Chlamydia has brought invaluable information on these obligate intracellular bacteria otherwise difficult to study due to the lack of tools to perform basic genetic manipulation. The recent emergence of high-throughput sequencing technologies yielding millions of reads in a short time lowered the costs of genome sequencing and thus represented a unique opportunity to study Chlamydia-re\ated bacteria. Based on the sequencing and the analysis of Chlamydiales genomes, this thesis provides significant insights into the genetic determinants of the intracellular lifestyle, the pathogenicity, the metabolism and the evolution of Chlamydia-related bacteria. A first approach showed the efficacy of rapid sequencing coupled to proteomics to identify immunogenic proteins. This method, particularly useful for an emerging pathogen such as Parachlamydia acanthamoebae, enabled us to discover good candidates for the development of diagnostic tools that would permit to evaluate at larger scale the role of this bacterium in disease. Second, the complete genome of Waddlia chondrophila, a potential agent of miscarriage, encodes numerous virulence factors to manipulate its host cell and resist to environmental stresses. The reconstruction of metabolic pathways showed that the bacterium possesses extensive capabilities compared to related organisms. However, it is still incapable of synthesizing some essential components and thus has to import them from its host. Third, the genome comparison of Protochlamydia naegleriophila to its closest known relative Protochlamydia amoebophila revealed a particular evolutionary dynamic with the occurrence of an unexpected genome rearrangement. Fourth, a phylogenetic analysis of P. acanthamoebae and Legionella drancourtii identified several genes probably exchanged by horizontal gene transfer with other intracellular bacteria that might occur within their amoebal host. These genes often encode mechanisms for resistance to metal or toxic compounds. As a whole, the analysis of the different genomes enabled us to highlight a large diversity in size, GC percentage, repeat content as well as plasmid organization. The abundant genomic data obtained during this thesis have a wide impact since they provide the necessary bases for detailed investigations on countless aspects of the biology and the evolution of Chlamydia-related bacteria, whether in wet lab or by bioinformatical analyses.RésuméL'ordre des Chlamydiales est un important phylum bactérien qui comprend de nombreuses espèces pathogènes pour l'homme et les animaux, dont Chlamydia trachomatis, responsable du trachome, la cause majeure de cécité d'origine infectieuse à travers le monde. Durant ces dernières décennies, de nombreuses bactéries apparentées aux Chlamydia ont été découvertes dans des échantillons environnementaux ou cliniques mais leur éventuel rôle pathogène dans le développement de maladies reste peu connu. Ces bactéries sont des intracellulaires obligatoires car elles ont besoin d'une cellule hôte pour se multiplier, ce qui rend leur étude particulièrement difficile. Le développement de nouvelles technologies permettant de séquencer le génome d'un organisme rapidement et à moindre coût ainsi que l'essor des méthodes d'analyse s'y rapportant représentent une opportunité exceptionnelle d'étudier ces organismes. Dans ce contexte, cette thèse démontre l'utilité de la génomique pour développer de nouveaux outils diagnostiques ainsi que pour étudier le métabolisme de ces bactéries, leurs facteurs de virulence et leur évolution.Ainsi, une première approche a illustré l'utilité d'un séquençage rapide pour obtenir les informations nécessaires à l'identification de protéines qui sont reconnues par des anticorps humains ou animaux. Cette méthode, particulièrement utile pour un pathogène émergent tel que Parachlamydia acanthamoebae, a permis de découvrir de bons candidats pour le développement d'un outil diagnostique qui permettrait d'évaluer à plus large échelle le rôle de cette bactérie notamment dans la pneumonie. L'analyse du contenu génique de Waddlia chondrophila, un autre germe qui pourrait être impliqué dans les avortements et tes fausses-couches, a en outre mis en évidence la présence de nombreux facteurs connus qui lui permettent de manipuler son hôte. Cette bactérie possède de plus grandes capacités métaboliques que les autres Chlamydia, mais elle est incapable de synthétiser certains composants et doit donc les importer de son hôte pour subvenir à ses besoins. La comparaison du génome de Protochlamydia naegleriophila à son plus proche parent, Protochlamydia amoebophila, a dévoilé une évolution dynamique particulière avec l'occurrence d'un réarrangement majeur inattendu après la séparation de ces deux espèces. En outre, ces études ont montré l'occurrence de plusieurs transferts de gène avec d'autres organismes plus éloignés, notamment d'autres intracellulaires d'amibes, souvent pour l'acquisition de mécanismes de résistances à des composés toxiques. Les données génomiques acquises durant ce travail posent les fondements nécessaires a de nombreuses analyses qui permettront progressivement de mieux comprendre de nombreux aspects de ces bactéries fascinantes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In recent years, analysis of the genomes of many organisms has received increasing international attention. The bulk of the effort to date has centred on the Human Genome Project and analysis of model organisms such as yeast, Drosophila and Caenorhabditis elegans. More recently, the revolution in genome sequencing and gene identification has begun to impact on infectious disease organisms. Initially, much of the effort was concentrated on prokaryotes, but small eukaryotic genomes, including the protozoan parasites Plasmodium, Toxoplasma and trypanosomatids (Leishmania, Trypanosoma brucei and T. cruzi), as well as some multicellular organisms, such as Brugia and Schistosoma, are benefiting from the technological advances of the genome era. These advances promise a radical new approach to the development of novel diagnostic tools, chemotherapeutic targets and vaccines for infectious disease organisms, as well as to the more detailed analysis of cell biology and function.Several networks or consortia linking laboratories around the world have been established to support these parasite genome projects[1] (for more information, see http://www.ebi.ac.uk/ parasites/paratable.html). Five of these networks were supported by an initiative launched in 1994 by the Specific Programme for Research and Tropical Diseases (TDR) of the WHO[2, 3, 4, 5, 6]. The Leishmania Genome Network (LGN) is one of these[3]. Its activities are reported at http://www.ebi.ac.uk/parasites/leish.html, and its current aim is to map and sequence the genome of Leishmania by the year 2002. All the mapping, hybridization and sequence data are also publicly available from LeishDB, an AceDB-based genome database (http://www.ebi.ac.uk/parasites/LGN/leissssoft.html).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Integrative and conjugative elements (ICE) form a diverse group of DNA elements that are integrated in the chromosome of the bacterial host, but can occasionally excise and horizontally transfer to a new host cell. ICE come in different families, typically with a conserved core for functions controlling the element's behavior and a variable region providing auxiliary functions to the host. The ICEclc element of Pseudomonas knackmussii strain B13 is representative for a large family of chromosomal islands detected by genome sequencing approaches. It provides the host with the capacity to degrade chloroaromatics and 2-aminophenol. Results: Here we study the transcriptional organization of the ICEclc core region. By northern hybridizations, reverse-transcriptase polymerase chain reaction (RT-PCR) and Rapid Amplification of cDNA Ends (5'-RACE) fifteen transcripts were mapped in the core region. The occurrence and location of those transcripts were further confirmed by hybridizing labeled cDNA to a semi-tiling micro-array probing both strands of the ICEclc core region. Dot blot and semi-tiling array hybridizations demonstrated most of the core transcripts to be upregulated during stationary phase on 3-chlorobenzoate, but not on succinate or glucose. Conclusions: The transcription analysis of the ICEclc core region provides detailed insights in the mode of regulatory organization and will help to further understand the complex mode of behavior of this class of mobile elements. We conclude that ICEclc core transcription is concerted at a global level, more reminiscent of a phage program than of plasmid conjugation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Extracellular calcium participates in several key physiological functions, such as control of blood coagulation, bone calcification or muscle contraction. Calcium homeostasis in humans is regulated in part by genetic factors, as illustrated by rare monogenic diseases characterized by hypo or hypercalcaemia. Both serum calcium and urinary calcium excretion are heritable continuous traits in humans. Serum calcium levels are tightly regulated by two main hormonal systems, i.e. parathyroid hormone and vitamin D, which are themselves also influenced by genetic factors. Recent technological advances in molecular biology allow for the screening of the human genome at an unprecedented level of detail and using hypothesis-free approaches, such as genome-wide association studies (GWAS). GWAS identified novel loci for calcium-related phenotypes (i.e. serum calcium and 25-OH vitamin D) that shed new light on the biology of calcium in humans. The substantial overlap (i.e. CYP24A1, CASR, GATA3; CYP2R1) between genes involved in rare monogenic diseases and genes located within loci identified in GWAS suggests a genetic and phenotypic continuum between monogenic diseases of calcium homeostasis and slight disturbances of calcium homeostasis in the general population. Future studies using whole-exome and whole-genome sequencing will further advance our understanding of the genetic architecture of calcium homeostasis in humans. These findings will likely provide new insight into the complex mechanisms involved in calcium homeostasis and hopefully lead to novel preventive and therapeutic approaches. Keyword: calcium, monogenic, genome-wide association studies, genetics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Routine screening of lung transplant recipients and hospital patients for respiratory virus infections allowed to identify human rhinovirus (HRV) in the upper and lower respiratory tracts, including immunocompromised hosts chronically infected with the same strain over weeks or months. Phylogenetic analysis of 144 HRV-positive samples showed no apparent correlation between a given viral genotype or species and their ability to invade the lower respiratory tract or lead to protracted infection. By contrast, protracted infections were found almost exclusively in immunocompromised patients, thus suggesting that host factors rather than the virus genotype modulate disease outcome, in particular the immune response. Complete genome sequencing of five chronic cases to study rhinovirus genome adaptation showed that the calculated mutation frequency was in the range observed during acute human infections. Analysis of mutation hot spot regions between specimens collected at different times or in different body sites revealed that non-synonymous changes were mostly concentrated in the viral capsid genes VP1, VP2 and VP3, independent of the HRV type. In an immunosuppressed lung transplant recipient infected with the same HRV strain for more than two years, both classical and ultra-deep sequencing of samples collected at different time points in the upper and lower respiratory tracts showed that these virus populations were phylogenetically indistinguishable over the course of infection, except for the last month. Specific signatures were found in the last two lower respiratory tract populations, including changes in the 5'UTR polypyrimidine tract and the VP2 immunogenic site 2. These results highlight for the first time the ability of a given rhinovirus to evolve in the course of a natural infection in immunocompromised patients and complement data obtained from previous experimental inoculation studies in immunocompetent volunteers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pneumocystis jirovecii is a fungus belonging to a basal lineage of the Ascomycotina, the Taphrinomycotina subphylum. It is a parasite specific to humans that dwells primarily in the lung and can cause severe pneumonia in individuals with debilitated immune system. Despite its clinical importance, many aspects of its biology remain poorly understood, at least in part because of the lack of a continuous in vitro cultivation system. The present thesis consists in the genome reconstruction and comparative genomics of P. jirovecii. It is made of three parts: (i) the de novo sequencing of P. jirovecii genome starting from a single broncho- alveolar lavage fluid of a single patient (ii) the de novo sequencing of the genome of the plant pathogen Taphrina deformans, a fungus closely related to P. jirovecii, and (iii) the genome scale comparison of P. jirovecii to other Taphrinomycotina members. Enrichment in P. jirovecii cells by immuno-precipitation, whole DNA random amplification, two complementary high throughput DNA sequencing methods, and in silico sorting and assembly of sequences were used for the de novo reconstruction of P. jirovecii genome from the microbiota of a single clinical specimen. An iterative ad hoc pipeline as well as numerical simulations was used to recover P. jirovecii sequences while purging out contaminants and assembly or amplification chimeras. This strategy produced a 8.1 Mb assembly, which encodes 3,898 genes. Homology searches, mapping on biochemical pathways atlases, and manual validations revealed that this genome lacks (i) most of the enzymes dedicated to the amino acids biosyntheses, and (ii) most virulence factors observed in other fungi, e.g. the glyoxylate shunt pathway and specific peptidases involved in the degradation of the host cell membrane. The same analyses applied to the available genomic sequences from Pneumocystis carinii the species infecting rats and Pneumocystis murina the species infecting mice revealed the same deficiencies. The genome sequencing of T. deformans yielded a 13 Mb assembly, which encodes 5,735 genes. T. deformans possesses enzymes involved plant cell wall degradation, secondary metabolism, the glyoxylate cycle, detoxification, sterol biosynthesis, as well as the biosyntheses of plant hormones such as abscisic acid or indole-3-acetic acid. T. deformans also harbors gene subsets that have counterparts in plant saprophytes or pathogens, which is consistent with its alternate saprophytic and pathogenic lifestyles. Mating genes were also identified. The homothallism of this fungus suggests a mating-type switching mechanism. Comparative analyses indicated that 81% of P. jirovecii genes are shared with eight other Taphrinomycotina members, including T. deformans, P. carinii and P. murina. These genes are mostly involved in housekeeping activities. The genes specific to the Pneumocystis genus represent 8%, and are involved in RNA metabolism and signaling. The signaling is known to be crucial for interaction of Pneumocystis spp with their environment. Eleven percent are unique to P. jirovecii and encode mostly proteins of unknown function. These genes in conjunction with other ones (e.g. the major surface glycoproteins) might govern the interaction of P. jirovecii with its human host cells, and potentially be responsible of the host specificity. P. jirovecii exhibits a reduced genome in size with a low GC content, and most probably scavenges vital compounds such as amino acids and cholesterol from human lungs. Consistently, its genome encodes a large set of transporters (ca. 22% of its genes), which may play a pivotal role in the acquisition of these compounds. All these features are generally observed in obligate parasite of various kingdoms (bacteria, protozoa, fungi). Moreover, epidemiological studies failed to evidence a free-living form of the fungus and Pneumocystis spp were shown to co-evolved with their hosts. Given also the lack of virulence factors, our observations strongly suggest that P. jirovecii is an obligate parasite specialized in the colonization of human lungs, and which causes disease only in individuals with compromised immune system. The same conclusion is most likely true for all other Pneumocystis spp in their respective mammalian host. - Pneumocystis jirovecii est un champignon appartenant à ine branche basale des Ascomycotina, le sous-embranchement des Taphrinomycotina. C'est un parasite spécifique aux humains qui réside principalement dans les poumons, et qui peut causer des pneumonies sévères chez des individus ayant un système immunitaire déficient. En dépit de son importance clinique, de nombreux aspects de sa biologie demeurent,largement méconnus, au moins en partie à cause de l'absence d'un système de culture in vitro continu. Cette thèse traite de la reconstruction du génome et de la génomique comparative de P. jirovecii. Elle comporte trois parties: (i) le séquençage de novo du génome de P. jirovecii à partir d'un lavage broncho-alvéolaire provenant d'un seul patient, (ii) le séquençage de novo du génome d'un champignon pathogène de plante Taphrina deformans qui est phylogénétiquement proche de P. jirovecii, et (iii) la comparaison du génome de P. jirovecii à celui d'autres membres du sous-embranchement des Taphrinomycotina. Un enrichissement en cellules de P. jirovecii par immuno-précipitation, une amplification aléatoire des molécules d'ADN, deux méthodes complémentaires de séquençage à haut débit, un tri in silico et un assemblage des séquences ont été utilisés pour reconstruire de novo le génome de P. jirovecii à partir du microbiote d'un seul échantillon clinique. Un pipeline spécifique ainsi que des simulations numériques ont été utilisés pour récupérer les séquences de P. jirovecii tout en éliminant les séquences contaminants et les chimères d'amplification ou d'assemblage. Cette stratégie a produit un assemblage de 8.1 Mb, qui contient 3898 gènes. Les recherches d'homologies, de cartographie des voies métaboliques et des validations manuelles ont révélé que ce génome est dépourvu (i) de la plupart des enzymes dédiées à la biosynthèse des acides aminés, et (ii) de la plupart des facteurs de virulence observés chez d'autres champignons, par exemple, le cycle du glyoxylate ainsi que des peptidases spécifiques impliquées dans la dégradation de la membrane de la cellule hôte. Les analyses appliquées aux données génomiques disponibles de Pneumocystis carinii, l'espèce infectant les rats, et de Pneumocystis murina, l'espèce infectant les souris, ont révélé les mêmes déficiences. Le séquençage du génome de T. deformans a généré un assemblage de 13.3 Mb qui contient 5735 gènes. T. deformans possède les gènes codant pour les enzymes impliquées dans la dégradation des parois cellulaires des plantes, le métabolisme secondaire, le cycle du glyoxylate, la détoxification, la biosynthèse des stérols ainsi que la biosynthèse d'hormones de plantes telles que l'acide abscissique ou l'acide indole 3-acétique. T. deformans possède également des sous-ensembles de gènes présents exclusivement chez des saprophytes ou des pathogènes de plantes, ce qui est consistent avec son mode de vie alternatif saprophyte et pathogène. Des gènes impliqués dans la conjugaison ont été identifiés. L'homothallisme de ce champignon suggère mécanisme de permutation du type conjuguant. Les analyses comparatives ont démontré que 81% des gènes de P. jirovecii sont présent chez les autres membres du sous-embranchement des Taphrinomycotina. Ces gènes sont essentiellement impliqués dans le métabolisme basai. Les gènes spécifiques au genre Pneumocystis représentent 8%, et sont impliqués dans le métabolisme de l'ARN et la signalisation. La signalisation est connue pour être cruciale pour l'interaction des espèces de Pneumocystis avec leur environnement. Les gènes propres à P. jirovecii représentent 11% et codent en majorité pour des protéines dont la fonction est inconnue. Ces gènes en conjonction avec d'autres (par exemple, les glycoprotéines de surface), pourraient être déterminants dans l'interaction de P. jirovecii avec les cellules de l'hôte humain, et être potentiellement responsable de la spécificité d'hôte. P. jirovecii possède un génome de taille réduite à faible pourcentage en GC et récupère très probablement des composés vitaux comme les acides aminés et le cholestérol à partir des poumons humains. De manière consistante, son génome code pour de nombreux transporteurs (22% de ses gènes), qui pourraient jouer un rôle essentiel dans l'acquisition de ces composés. Ces caractéristiques sont généralement observées chez les parasites obligatoires de plusieurs règnes (bactéries, protozoaires, champignons). De plus, les études épidémiologiques n'ont pas réussi à prouver l'existence d'ime forme vivant librement du champignon. Etant donné également l'absence de facteurs de virulence, nos observations suggèrent que P. jirovecii est un parasite obligatoire spécialisé dans la colonisation des poumons humains, ne causant une maladie que chez des individus ayant un système immunitaire compromis. La même conclusion est très probablement applicable à toutes les autres espèces de Pneumocystis dans leur hôte mammifère respectif.