187 resultados para weight reduction
em Université de Lausanne, Switzerland
Resumo:
Although platelet cytosolic calcium has been shown to decrease during pharmacological treatment of hypertension, there is no evidence that cytosolic calcium also falls during a nonpharmacological reduction in blood pressure. To provide such evidence, we examined prospectively the relation between platelet cytosolic calcium and ambulatory blood pressure during weight reduction in moderately overweight (body mass index [BMI] greater than 25), mildly hypertensive individuals. The experimental group (responders: BMI reduction greater than 5%) consisted of 19 patients who lost 8.5 +/- 2.9 kg (mean +/- SD, p less than 0.05) during a 10-week hypocaloric diet, whereas the control group (nonresponders: BMI reduction less than 5%) consisted of 12 patients who showed no relevant change in body weight (-2.0 +/- 1.3 kg) during the same period of time. The moderate weight loss of the responders decreased blood pressure by 14/5 mm Hg (p less than 0.05), as measured by ambulatory monitoring, which renders a placebo effect unlikely. This nonpharmacological reduction in blood pressure was accompanied by a proportional 11% decrease (p less than 0.05) in platelet cytosolic calcium and also by significant (p less than 0.05) decreases in plasma catecholamines and serum cholesterol. These findings establish the concept of a nonpharmacological reduction in free cytosolic platelet calcium in humans and add further evidence suggesting a link between intracellular calcium homeostasis and blood pressure regulation.
Resumo:
The thermic effect of a meal (TEM) was measured in a group of 10 prepubertal obese children before (OB) and after (OA) weight reduction, and in a group of 10 age-matched control children (C) of normal body weight. Following a hypocaloric balanced diet for 6 +/- 1 months, the obese children lost 5.2 +/- 1.3 kg i.e. 11% of their initial body weight. The thermic response to the mixed liquid meal - fed at an energy level corresponding to 30% of the 24 h premeal resting metabolic rate - was found to be significantly lower in OB than in C children (61 +/- 25 kJ.3h-1 vs 79 +/- 21 kJ.3h-1, P less than 0.05), despite their higher test meal energy. After slimming, the TEM of obese children increased towards the controls' values (73 +/- 30 kJ.3h-1). These results support the hypothesis of the existence of a moderate thermogenic defect in some obese children which represents a consequence rather than an aetiological factor of obesity.
Resumo:
We have reported that ingesting a meal immediately after exercise increased skeletal muscle accretion and less adipose tissue accumulation in rats employed in a 10 week resistance exercise program. We hypothesized that a possible increase in the resting metabolic rate (RMR) as a result of the larger skeletal muscle mass might be responsible for the less adipose deposition. Therefore, the effect of the timing of a protein supplement after resistance exercise on body composition and the RMR was investigated in 17 slightly overweight men. The subjects participated in a 12-week weight reduction program consisting of mild energy restriction (17% energy intake reduction) and a light resistance exercise using a pair of dumbbells (3-5 kg). The subjects were assigned to two groups. Group S ingested a protein supplement (10 g protein, 7 g carbohydrate, 3.3 g fat and one-third of recommended daily allowance (RDA) of vitamins and minerals) immediately after exercise. Group C did not ingest the supplement. Daily intake of both energy and protein was equal between the two groups and the protein intake met the RDA. After 12 weeks, the bodyweight, skinfold thickness, girth of waist and hip and percentage bodyfat significantly decreased in the both groups, however, no significant differences were observed between the groups. The fat-free mass significantly decreased in C, whereas its decrease in S was not significant. The RMR and post-meal total energy output significantly increased in S, while these variables did not change in C. In addition, the urinary nitrogen excretion tended to increase in C but not in S. These results suggest that the RMR increase observed in S might be associated with an increase in body protein synthesis.
Resumo:
BACKGROUND: Intraabdominal adipose tissue (IAAT) is the body fat depot most strongly related to disease risk. Weight reduction is advocated for overweight people to reduce total body fat and IAAT, although little is known about the effect of weight loss on abdominal fat distribution in different races. OBJECTIVE: We compared the effects of diet-induced weight loss on changes in abdominal fat distribution in white and black women. DESIGN: We studied 23 white and 23 black women, similar in age and body composition, in the overweight state [mean body mass index (BMI; in kg/m(2)): 28.8] and the normal-weight state (mean BMI: 24.0) and 38 never-overweight control women (mean BMI: 23.4). We measured total body fat by using a 4-compartment model, trunk fat by using dual-energy X-ray absorptiometry, and cross-sectional areas of IAAT (at the fourth and fifth lumbar vertebrae) and subcutaneous abdominal adipose tissue (SAAT) by using computed tomography. RESULTS: Weight loss was similar in white and black women (13.1 and 12.6 kg, respectively), as were losses of total fat, trunk fat, and waist circumference. However, white women lost more IAAT (P < 0.001) and less SAAT (P < 0.03) than did black women. Fat patterns regressed toward those of their respective control groups. Changes in waist circumference correlated with changes in IAAT in white women (r = 0.54, P < 0.05) but not in black women (r = 0.19, NS). CONCLUSIONS: Despite comparable decreases in total and trunk fat, white women lost more IAAT and less SAAT than did black women. Waist circumference was not a suitable surrogate marker for tracking changes in the visceral fat compartment in black women.
Resumo:
Glucose-induced thermogenesis was studied in 12 overweight patients (9F and 3M) before (mean body weight +/- s.e.m. 83 +/- 2 kg) and after weight loss (68 +/- 2 kg), and in eight of the same patients following relapse of body weight gain (84 +/- 5 kg). Expressed as a percentage of the energy content of the 100 g oral glucose load, glucose-induced thermogenesis was lower in the overweight before weight loss (6.5 +/- 0.5 per cent, P less than 0.05), after weight loss (3.9 +/- 0.6 per cent, P less than 0.01) and after weight regain (6.3 +/- 0.9 per cent, P less than 0.05) than in a group of lean control subjects, matched for sex and age (8.3 +/- 0.5 per cent). Basal energy expenditure was lower after weight reduction than before (1.16 +/- 0.04 vs 1.41 +/- 0.08 kcal/min, P less than 0.01). In the formerly overweight patients, the combined effect of a decreased basal energy expenditure and an attenuation of glucose induced thermogenesis resulted in a postprandial energy expenditure which was markedly lower than in the overweight state (P less than 0.001). Following relapse of obesity, glucose-induced thermogenesis remained attenuated compared to control subjects. These results suggest that a lowered basal energy expenditure and a reduced glucose-induced thermogenesis contribute to the positive energy balance which results in relapse of body weight gain after cessation of a hypocaloric diet.
Resumo:
Twenty-four hour energy expenditure (24 EE), resting metabolic rate (RMR), spontaneous physical activity and body composition were determined in 7 obese patients (5 females, 2 males, 174 +/- 9% IBW, 38 +/- 2% fat mass) on 2 different occasions: before weight reduction, and after 10 to 16 weeks on a hypocaloric diet as outpatients, the recommended energy intake varying from 3500 to 4700 kJ/day depending on the subject. Mean body weight loss was 12.6 +/- 1.9 kg, ie 13% of initial body weight, 72% being fat. Twenty-four hour energy expenditure (24 EE) was measured in a respiration chamber with all the subjects receiving 10418 kJ/d before weight reduction and an average of 3360 +/- 205 kJ/d while on the diet. When expressed in absolute values, both 24 EE and RMR decreased during the hypocaloric diet from 9819 +/- 442 to 8229 +/- 444 and from 7262 +/- 583 to 6591 +/- 547 kJ/d respectively. On the basis of fat-free-mass (FFM), 24 EE decreased from 168 +/- 6 to 148 +/- 5 kJ/kg FFM/d whereas RMR was unchanged (approximately 120 kJ/kg FFM/d). Approximately one half of the 24 EE reduction (1590 kJ/d) was accounted for by a decrease in RMR, the latter being mainly accounted for by a reduction in FFM. Most of the remaining decline in 24 EE can be explained by a decreased thermic effect of food, and by the reduced cost of physical activity mainly due to a lower body weight. Therefore, there seems little reason to evoke additional mechanisms to explain the decline in energy expenditure during dieting.
Resumo:
BACKGROUND: Primary care physicians are well positioned to provide counselling for overweight and obese patients, but no prospective study has assessed the effectiveness of this counselling in primary care. We aimed to evaluate weight reduction counselling by primary care physicians, and its relationship with weight change and patients' behaviour to control weight. DESIGN: A prospective cohort study. METHODS: We enrolled 523 consecutive overweight and obese patients from two Swiss academic primary care clinics. Physicians and patients were blinded to the study aims. We assessed the use of 10 predefined counselling strategies for weight reduction, and weight change and behaviour to control weight after 1 year. RESULTS: Sixty-five per cent of patients received some form of weight reduction counselling whereas 35% received no counselling. A total of 407 patients completed the 1-year follow-up. Those who received counselling lost on average (SD) 1.0 (5.0) kg after 1 year, whereas those who were not advised gained 0.3 (5.0) kg (P = 0.02). In multivariate analysis, each additional counselling strategy was associated with a mean weight loss of 0.2 kg (95% confidence interval 0.03-0.4, P = 0.02). Patients counselled by their physician had more favourable behaviour to control weight than those not counselled, such as setting a target weight (56 versus 36%) or visiting a dietician (23 versus 10%, both P < 0.001). CONCLUSIONS: Weight reduction counselling by primary care physicians is associated with a modest weight loss and favourable behaviour to control weight. However, many obese and overweight patients receive no advice on weight loss during primary care visits.
Resumo:
The metabolic syndrome considerably increases the risk of cardiovascular and renal events in hypertension. It has been associated with a wide range of classical and new cardiovascular risk factors as well as with early signs of subclinical cardiovascular and renal damage. Obesity and insulin resistance, beside a constellation of independent factors, which include molecules of hepatic, vascular, and immunologic origin with proinflammatory properties, have been implicated in the pathogenesis. The close relationships among the different components of the syndrome and their associated disturbances make it difficult to understand what the underlying causes and consequences are. At each of these key points, insulin resistance and obesity/proinflammatory molecules, interaction of demographics, lifestyle, genetic factors, and environmental fetal programming results in the final phenotype. High prevalence of end-organ damage and poor prognosis has been demonstrated in a large number of cross-sectional and a few number of prospective studies. The objective of treatment is both to reduce the high risk of a cardiovascular or a renal event and to prevent the much greater chance that metabolic syndrome patients have to develop type 2 diabetes or hypertension. Treatment consists in the opposition to the underlying mechanisms of the metabolic syndrome, adopting lifestyle interventions that effectively reduce visceral obesity with or without the use of drugs that oppose the development of insulin resistance or body weight gain. Treatment of the individual components of the syndrome is also necessary. Concerning blood pressure control, it should be based on lifestyle changes, diet, and physical exercise, which allows for weight reduction and improves muscular blood flow. When antihypertensive drugs are necessary, angiotensin-converting enzyme inhibitors, angiotensin II-AT1 receptor blockers, or even calcium channel blockers are preferable over diuretics and classical beta-blockers in monotherapy, if no compelling indications are present for its use. If a combination of drugs is required, low-dose diuretics can be used. A combination of thiazide diuretics and beta-blockers should be avoided.
Resumo:
BACKGROUND: The visceral (VAT) and subcutaneous (SCAT) adipose tissues play different roles in physiology and obesity. The molecular mechanisms underlying their expansion in obesity and following body weight reduction are poorly defined. METHODOLOGY: C57Bl/6 mice fed a high fat diet (HFD) for 6 months developed low, medium, or high body weight as compared to normal chow fed mice. Mice from each groups were then treated with the cannabinoid receptor 1 antagonist rimonabant or vehicle for 24 days to normalize their body weight. Transcriptomic data for visceral and subcutaneous adipose tissues from each group of mice were obtained and analyzed to identify: i) genes regulated by HFD irrespective of body weight, ii) genes whose expression correlated with body weight, iii) the biological processes activated in each tissue using gene set enrichment analysis (GSEA), iv) the transcriptional programs affected by rimonabant. PRINCIPAL FINDINGS: In VAT, "metabolic" genes encoding enzymes for lipid and steroid biosynthesis and glucose catabolism were down-regulated irrespective of body weight whereas "structure" genes controlling cell architecture and tissue remodeling had expression levels correlated with body weight. In SCAT, the identified "metabolic" and "structure" genes were mostly different from those identified in VAT and were regulated irrespective of body weight. GSEA indicated active adipogenesis in both tissues but a more prominent involvement of tissue stroma in VAT than in SCAT. Rimonabant treatment normalized most gene expression but further reduced oxidative phosphorylation gene expression in SCAT but not in VAT. CONCLUSION: VAT and SCAT show strikingly different gene expression programs in response to high fat diet and rimonabant treatment. Our results may lead to identification of therapeutic targets acting on specific fat depots to control obesity.
Resumo:
In the current issue of epidemiology, Danaei and colleagues elegantly estimated both the direct effect and the indirect effect-that is, the effect mediated by blood pressure, cholesterol, glucose, fibrinogen, and high-sensitivity C-reactive protein-of body mass index (BMI) on the risk of coronary heart disease (CHD). they analyzed data from 9 cohort studies including 58,322 patients and 9459 CHD events, with baseline measurements between 1954 and 2001. Using sophisticated and cutting-edge methods for direct and indirect effect estimations, the authors estimated that half of the risk of overweight and obesity would be mediated by blood pressure, cholesterol, and glucose. Few additional percentage points of the risk would be mediated by fibrinogen and hs-CRP. How should we understand these estimates? Can we say that if obese persons reduce their body weight and reach a normal body weight, their excess risk of CHD would be reduced by half through an improvement in these mediators and by half through the reduction in BmI itself? Is that also true if these individuals are prevented from becoming obese in the first place? Can we also conclude that if these mediators are well controlled in obese individuals through other means than a body weight reduction, their excess risk of CHD would be reduced by half? Let us confront these estimates with observations from studies evaluating 2 interventions to reduce body weight, that is, bariatric surgery in patients with severe obesity and intensive lifestyle intervention in overweight patients with diabetes
Resumo:
PURPOSE: Optimal high-intensity interval training (HIIT) regimens for running performance are unknown, although most protocols result in some benefit to key performance factors (running economy (RE), anaerobic threshold (AT), or maximal oxygen uptake (V˙O2max)). Lower-body positive pressure (LBPP) treadmills offer the unique possibility to partially unload runners and reach supramaximal speeds. We studied the use of LBPP to test an overspeed HIIT protocol in trained runners. METHODS: Eleven trained runners (35 ± 8 yr, V˙O2max, 55.7 ± 6.4 mL·kg·min) were randomized to an LBPP (n = 6) or a regular treadmill (CON, n = 5), eight sessions over 4 wk of HIIT program. Four to five intervals were run at 100% of velocity at V˙O2max (vV˙O2max) during 60% of time to exhaustion at vV˙O2max (Tlim) with a 1:1 work:recovery ratio. Performance outcomes were 2-mile track time trial, V˙O2max, vV˙O2max, vAT, Tlim, and RE. LBPP sessions were carried out at 90% body weight. RESULTS: Group-time effects were present for vV˙O2max (CON, 17.5 vs. 18.3, P = 0.03; LBPP, 19.7 vs. 22.3 km·h; P < 0.001) and Tlim (CON, 307.0 vs. 404.4 s, P = 0.28; LBPP, 444.5 vs. 855.5, P < 0.001). Simple main effects for time were present for field performance (CON, -18; LBPP, -25 s; P = 0.002), V˙O2max (CON, 57.6 vs. 59.6; LBPP, 54.1 vs. 55.1 mL·kg·min; P = 0.04) and submaximal HR (157.7 vs. 154.3 and 151.4 vs. 148.5 bpm; P = 0.002). RE was unchanged. CONCLUSIONS: A 4-wk HIIT protocol at 100% vV˙O2max improves field performance, vV˙O2max, V˙O2max and submaximal HR in trained runners. Improvements are similar if intervals are run on a regular treadmill or at higher speeds on a LPBB treadmill with 10% body weight reduction. LBPP could provide an alternative for taxing HIIT sessions.
Resumo:
AIMS: To investigate the effect of surgical gastric bypass-induced weight loss and related alterations in endocannabinoids (ECs) and adipocytokine plasma levels on coronary circulatory dysfunction in morbidly obese (MOB) individuals. METHODS AND RESULTS: Myocardial blood flow (MBF) responses to cold pressor test (CPT) from rest (ΔMBF) and during pharmacologically induced hyperaemia were measured with &supl;³N-ammonia PET/CT in 18 MOB individuals with a body mass index (BMI) > 40 kg/m² at baseline and after a median follow-up period of 22 months. Gastric bypass intervention decreased BMI from a median of 44.8 (inter-quartile range: 43.3, 48.2) to 30.8 (27.3, 34.7) kg/m² (P < 0.0001). This decrease in BMI was accompanied by a marked improvement in endothelium-related ΔMBF to CPT and hyperaemic MBFs, respectively [0.34 (0.18, 0.41) from 0.03 (-0.08, 0.15) mL/g/min, P = 0.002; and 2.51 (2.17, 2.64) from 1.53 (1.39, 2.18) mL/g/min, P < 0.001]. There was an inverse correlation between decreases in plasma concentrations of the EC anandamide and improvement in ΔMBF to CPT (r = -0.59, P = 0.009), while increases in adiponectin plasma levels correlated positively with hyperaemic MBFs (r = 0.60, P = 0.050). Conversely, decreases in leptin plasma concentrations were not observed to correlate with the improvement in coronary circulatory function (r = 0.22, P = 0.400, and r = -0.31, P = 0.250). CONCLUSIONS: Gastric bypass-related reduction of BMI in MOB individuals beneficially affects coronary circulatory dysfunction. The dysbalance between ECs and adipocytokines appears to be an important determinant of coronary circulatory function in obesity.
Resumo:
Expression of two important glucose transporter proteins, GLUT 2 (which is the typical glucose transporter in hepatocytes of adult liver) and the erythroid/brain type glucose transporter GLUT 1 (representing the typical glucose transporter in fetal liver parenchyma), was studied immunocytochemically during hepatocarcinogenesis in rats at different time points between 7 and 65 wk after cessation of 7-wk administration of 12 mg/kg of body weight of N-nitrosomorpholine p.o. (stop model). Foci of altered hepatocytes excessively storing glycogen (GSF) and mixed cell foci (MCF) composed of both glycogenotic and glycogen-poor cells were present at all time points studied. Seven wk after withdrawal of the carcinogen, GSF were the predominant type of focus of altered hepatocytes. Morphometrical evaluation of the focal lesions revealed that the number and volume fraction of GSF increased steadily until Wk 65. MCF were rare at 7 wk, increased slightly in number and size until Wk 37, but showed a pronounced elevation in their number and volume fraction from Wk 37 to Wk 65. In both GSF and MCF, GLUT 2 was generally decreased or partially absent at all time points. Consequently, foci of decreased GLUT 2 expression showed a steady increase in number and volume fraction from Wk 7 to Wk 65. GLUT 1 was lacking in GSF but occurred in some MCF from Wk 50 onward. The liver type glucose transporter GLUT 2 was decreased in all adenomas and hepatocellular carcinomas (HCC). In three of seven adenomas and 10 of 12 carcinomas, expression of GLUT 1 was increased compared with normal liver parenchyma. In two cases of adenoid HCC, cells of ductular formations coexpressed GLUT 2 and GLUT 1. In contrast, normal bile ducts, bile duct proliferations, and cystic cholangiomas expressed only GLUT 1. Seven of 12 HCC contained many microvessels intensely stained for GLUT 1, a phenomenon never observed in normal liver. Whenever adenoid tumor formations occurred, GLUT 1-positive microvessels were located in the immediate vicinity of these formations. Only in one HCC were such microvessels found in the absence of adenoid formations. Our studies indicate that a reduction of GLUT 2 expression occurs already in early preneoplastic hepatic foci and is maintained throughout hepatocarcinogenesis, including benign and malignant neoplasms. Reexpression of GLUT 1, however, appears in a few MCF and in the majority of adenomas and carcinomas.
Resumo:
Paradoxically, morbid obesity was suggested to protect from cardiovascular co-morbidities as compared to overweight/obese patients. We hypothesise that this paradox could be inferred to modulation of the "endocannabinoid" system on systemic and subcutaneous adipose tissue (SAT) inflammation. We designed a translational project including clinical and in vitro studies at Geneva University Hospital. Morbid obese subjects (n=11) were submitted to gastric bypass surgery (GBS) and followed up for one year (post-GBS). Insulin resistance and circulating and SAT levels of endocannabinoids, adipocytokines and CC chemokines were assessed pre- and post-GBS and compared to a control group of normal and overweight subjects (CTL) (n=20). In vitro cultures with 3T3-L1 adipocytes were used to validate findings from clinical results. Morbid obese subjects had baseline lower insulin sensitivity and higher hs-CRP, leptin, CCL5 and anandamide (AEA) levels as compared to CTL. GBS induced a massive weight and fat mass loss, improved insulin sensitivity and lipid profile, decreased C-reactive protein, leptin, and CCL2 levels. In SAT, increased expression of resistin, CCL2, CCL5 and tumour necrosis factor and reduced MGLL were shown in morbid obese patients pre-GBS when compared to CTL. GBS increased all endocannabinoids and reduced adipocytokines and CC chemokines. In morbid obese SAT, inverse correlations independent of body mass index were shown between palmitoylethanolamide (PEA) and N-oleoylethanolamide (OEA) levels and inflammatory molecules. In vitro, OEA inhibited CCL2 secretion from adipocytes via ERK1/2 activation. In conclusion, GBS was associated with relevant clinical, metabolic and inflammatory improvements, increasing endocannabinoid levels in SAT. OEA directly reduced CCL2 secretion via ERK1/2 activation in adipocytes.