6 resultados para water technology

em Université de Lausanne, Switzerland


Relevância:

40.00% 40.00%

Publicador:

Resumo:

With the current enzootic circulation of highly pathogenic avian influenza viruses, the ability to increase global pandemic influenza vaccine production capacity is of paramount importance. This has been highlighted by, and is one of the main pillars of, the WHO Global Action Plan for Influenza Vaccines (GAP). Such capacity expansion is especially relevant in developing countries. The Vaccine Formulation Laboratory at University of Lausanne is engaged in the technology transfer of an antigen-sparing oil-in-water adjuvant in order to empower developing countries vaccine manufacturers to increase pandemic influenza vaccine capacity. In a one-year project funded by United States Department of Health and Human Services, the Vaccine Formulation Laboratory transferred the process know-how and associated equipment for the pilot-scale manufacturing of an oil-in-water adjuvant to Bio Farma, Indonesia's state-owned vaccine manufacturer, for subsequent formulation with H5N1 pandemic influenza vaccines. This paper describes the experience acquired and lessons learnt from this technology transfer project.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sulfur speciation and the sources of water-soluble sulfate in three oxidizing sulfidic mine tailings impoundments were investigated by selective dissolution and stable isotopes. The studied tailings impoundments-Piuquenes, Cauquenes, and Salvador No. 1-formed from the exploitation of the Rio Blanco/La Andina, El Teniente, and El Salvador Chilean porphyry copper deposits, which are located in Alpine, Mediterranean, and hyperarid climates, respectively. The water-soluble sulfate may originate from dissolution of primary ore sulfates (e.g., gypsum, anhydrite, jarosite) or from oxidation of sulfide minerals exposed to aerobic conditions during mining activity. With increasing aridity and decreasing pyrite content of the tailings, the sulfur speciation in the unsaturated oxidation zones showed a trend from dominantly Fe(Ill) oxyhydroxide fixed sulfate (e.g., jarosite and schwertmannite) in Piuquenes toward increasing presence of water-soluble sulfate at Cauquenes and Salvador No. 1. In the saturated primary zones, sulfate is predominantly present in water-soluble form (mainly as anhydrite and/or gypsum). In the unsaturated zone at Piuquenes and Cauquenes,the delta(34)S(S04) values ranged from +0.5 parts per thousand to +2.0 parts per thousand and from -0.4 parts per thousand to +1.4 parts per thousand Vienna Canyon Diablo Troilite (V-CDT), respectively, indicating a major sulfate source from pyrite oxidation (delta(34)S(pyrite) -1.1 parts per thousand and -0.9 parts per thousand). In the saturated zone at Piuquenes and Cauquenes, the values ranged from -0.8%. to +0.3 parts per thousand and from +2.2 parts per thousand to +3.9 parts per thousand, respectively. At Cauquenes the 34 S enrichment in the saturated zone toward depth indicates the increasing contribution of isotopically heavy dissolved sulfate from primary anhydrite (similar to+10.9%o). At El Salvador No. 1, the delta(34)S(SO4) average value is -0.9 parts per thousand, suggesting dissolution of supergene sulfate minerals (jarosite, alunite, gypsum) with a delta(34)S similar to -0.7 parts per thousand as the most probable sulfate source. The gradual decrease Of delta(18)O(S04) values from the surface to the oxidation front in the tailings impoundments at Piuquenes (from -4.5 parts per thousand to -8.6 parts per thousand Vienna Standard Mean Ocean Water, V-SMOW) and at Cauquenes (from -1.3 parts per thousand to -3.5 parts per thousand) indicates the increasing importance of ferric iron as the main electron acceptor in the oxidation of pyrite. The different delta(18)O(SO4) values between the tailings impoundments studied here reflect the local climates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the study of the geochemical processes associated with the first successful remediation of a marine shore tailings deposit in a coastal desert environment (Bahia de Ite, in the Atacama Desert of Peru). The remediation approach implemented a wetland on top of the oxidized tailings. The site is characterized by a high hydrauliz gradient produced by agricultural irrigation on upstream gravel terraces that pushed river water (similar to 500 mg/L SO(4)) toward the sea and through the tailings deposit. The geochemical and isotopic (delta(2)H(water) and delta(18)O(water), delta(34)S(sulfate) , delta(18)O(sulfate)) approach applied here revealed that evaporite horizons (anhydrite and halite) in the gravel terraces are the source of increased concentrations of SO(4), Cl, and Na up to similar to 1500 mg/L in the springs at the base of the gravel terraces. Deeper groundwater interacting with underlying marine sequences increased the concentrations of SO(4), Cl, and Na up to 6000 mg/L and increased the alkalinity up to 923 mg/L CaCO(3) eq. in the coastal aquifer. These waters infiltrated into the tailings deposit at the shelf-tailings interface. Nonremediated tailings had a low-pH oxidation zone (pH 1-4) with significant accumulations of efflorescent salts (10-20 cm thick) at the surface because of upward capillary transport of metal cations in the arid climate. Remediated tailings were characterized by neutral pH and reducing conditions (pH similar to 7, Eh similar to 100 mV). As a result, most bivalent metals such as Cu, Zn, and Ni had very low concentrations (around 0.01 mg/L or below detection limit) because of reduction and sorption processes. In contrast, these reducing conditions increased the mobility of iron from two sources in this system: (1) The originally Fe(III)-rich oxidation zone, where Fe(II) was reduced during the remediation process and formed an Fe(II) plume, and (2) reductive dissolution of Fe(III) oxides present in the original shelf lithology formed an Fe-Mn plume at 10-m depth. These two Fe-rich plumes were pushed toward the shoreline where more oxidizing and higher pH conditions triggered the precipitation of Fe(HI)hydroxide coatings on silicates. These coatings acted as a filter for the arsenic, which naturally infiltrated with the river water (similar to 500 mu g/L As natural background) into the tailings deposit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the first hours after release of petroleum at sea, crude oil hydrocarbons partition rapidly into air and water. However, limited information is available about very early evaporation and dissolution processes. We report on the composition of the oil slick during the first day after a permitted, unrestrained 4.3 m(3) oil release conducted on the North Sea. Rapid mass transfers of volatile and soluble hydrocarbons were observed, with >50% of ≤C17 hydrocarbons disappearing within 25 h from this oil slick of <10 km(2) area and <10 μm thickness. For oil sheen, >50% losses of ≤C16 hydrocarbons were observed after 1 h. We developed a mass transfer model to describe the evolution of oil slick chemical composition and water column hydrocarbon concentrations. The model was parametrized based on environmental conditions and hydrocarbon partitioning properties estimated from comprehensive two-dimensional gas chromatography (GC×GC) retention data. The model correctly predicted the observed fractionation of petroleum hydrocarbons in the oil slick resulting from evaporation and dissolution. This is the first report on the broad-spectrum compositional changes in oil during the first day of a spill at the sea surface. Expected outcomes under other environmental conditions are discussed, as well as comparisons to other models.