121 resultados para vegetative axis
em Université de Lausanne, Switzerland
Resumo:
RATIONALE: A dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is a well-documented neurobiological finding in major depression. Moreover, clinically effective therapy with antidepressant drugs may normalize the HPA axis activity. OBJECTIVE: The aim of this study was to test whether citalopram (R/S-CIT) affects the function of the HPA axis in patients with major depression (DSM IV). METHODS: Twenty depressed patients (11 women and 9 men) were challenged with a combined dexamethasone (DEX) suppression and corticotropin-releasing hormone (CRH) stimulation test (DEX/CRH test) following a placebo week and after 2, 4, and 16 weeks of 40 mg/day R/S-CIT treatment. RESULTS: The results show a time-dependent reduction of adrenocorticotrophic hormone (ACTH) and cortisol response during the DEX/CRH test both in treatment responders and nonresponders within 16 weeks. There was a significant relationship between post-DEX baseline cortisol levels (measured before administration of CRH) and severity of depression at pretreatment baseline. Multiple linear regression analyses were performed to identify the impact of psychopathology and hormonal stress responsiveness and R/S-CIT concentrations in plasma and cerebrospinal fluid (CSF). The magnitude of decrease in cortisol responsivity from pretreatment baseline to week 4 on drug [delta-area under the curve (AUC) cortisol] was a significant predictor (p<0.0001) of the degree of symptom improvement following 16 weeks on drug (i.e., decrease in HAM-D21 total score). The model demonstrated that the interaction of CSF S-CIT concentrations and clinical improvement was the most powerful predictor of AUC cortisol responsiveness. CONCLUSION: The present study shows that decreased AUC cortisol was highly associated with S-CIT concentrations in plasma and CSF. Therefore, our data suggest that the CSF or plasma S-CIT concentrations rather than the R/S-CIT dose should be considered as an indicator of the selective serotonergic reuptake inhibitors (SSRIs) effect on HPA axis responsiveness as measured by AUC cortisol response.
Resumo:
Background Decisions on limiting life-sustaining treatment for patients in the vegetative state (VS) are emotionally and morally challenging. In Germany, doctors have to discuss, together with the legal surrogate (often a family member), whether the proposed treatment is in accordance with the patient's will. However, it is unknown whether family members of the patient in the VS actually base their decisions on the patient's wishes. Objective To examine the role of advance directives, orally expressed wishes, or the presumed will of patients in a VS for family caregivers' decisions on life-sustaining treatment. Methods and sample A qualitative interview study with 14 next of kin of patients in a VS in a long-term care setting was conducted; 13 participants were the patient's legal surrogates. Interviews were analysed according to qualitative content analysis. Results The majority of family caregivers said that they were aware of aforementioned wishes of the patient that could be applied to the VS condition, but did not base their decisions primarily on these wishes. They gave three reasons for this: (a) the expectation of clinical improvement, (b) the caregivers' definition of life-sustaining treatments and (c) the moral obligation not to harm the patient. If the patient's wishes were not known or not revealed, the caregivers interpreted a will to live into the patient's survival and non-verbal behaviour. Conclusions Whether or not prior treatment wishes of patients in a VS are respected depends on their applicability, and also on the medical assumptions and moral attitudes of the surrogates. We recommend repeated communication, support for the caregivers and advance care planning.
Resumo:
The STEP HIV vaccine trial, which evaluated a replication-defective adenovirus type 5 (Ad5) vector vaccine, was recently stopped. The reasons for this included lack of efficacy of the vaccine and a twofold increase in the incidence of HIV acquisition among vaccinated recipients with increased Ad5-neutralizing antibody titers compared with placebo recipients. To model the events that might be occurring in vivo, the effect on dendritic cells (DCs) of Ad5 vector alone or treated with neutralizing antiserum (Ad5 immune complexes [IC]) was compared. Ad5 IC induced more notable DC maturation, as indicated by increased CD86 expression, decreased endocytosis, and production of tumor necrosis factor and type I interferons. We found that DC stimulation by Ad5 IC was mediated by the Fcgamma receptor IIa and Toll-like receptor 9 interactions. DCs treated with Ad5 IC also induced significantly higher stimulation of Ad5-specific CD8 T cells equipped with cytolytic machinery. In contrast to Ad5 vectors alone, Ad5 IC caused significantly enhanced HIV infection in DC-T cell cocultures. The present results indicate that Ad5 IC activates a DC-T cell axis that, together with the possible persistence of the Ad5 vaccine in seropositive individuals, may set up a permissive environment for HIV-1 infection, which could account for the increased acquisition of HIV-1 infection among Ad5 seropositive vaccine recipients.
Resumo:
The aim of this study was to evaluate the effect of ovariectomy on the acute-phase response of inflammatory stress. Ex vivo adrenocortical, peripheral mononuclear cell (PMNC) and adipocyte activities were studied in intact and ovariectomized mice. Endotoxemia was mimicked by intraperitoneal administration of bacterial lipopolysaccharide (LPS; 25 mg per mouse) to sham-operated and 21-day ovariectomized mice. Circulating corticosterone, tumor necrosis factor-alpha (TNFalpha) and leptin concentrations were monitored before and 30-120 min after the administration of LPS. Additionally, in vitro experiments were performed with isolated corticoadrenal cells, PMNCs and omental adipocytes from sham-operated and ovariectomized mice incubated with specific secretagogues. The results indicate that while ovariectomy enhanced TNFalpha secretion after in vivo administration of LPS, it reduced corticoadrenal response and abrogated LPS-elicited leptin secretion into the circulation. While the corticoadrenal sensitivity to ACTH stimulation was reduced by ovariectomy, the LPS-induced PMNC response was not affected. Exogenous leptin enhanced baseline PMNC function regardless of surgery. Finally, ovariectomy drastically reduced in vitro adipocyte functionality. Our data support the notion that ovariectomy modified neuroendocrine-immune-adipocyte axis function and strongly suggest that ovarian activity could play a pivotal role in the development of an adequate immune defense mechanism after injury.
Resumo:
Estrogens and progesterones are major drivers of breast development but also promote carcinogenesis in this organ. Yet, their respective roles and the mechanisms underlying their action in the human breast are unclear. Receptor activator of nuclear factor κB ligand (RANKL) has been identified as a pivotal paracrine mediator of progesterone function in mouse mammary gland development and mammary carcinogenesis. Whether the factor has the same role in humans is of clinical interest because an inhibitor for RANKL, denosumab, is already used for the treatment of bone disease and might benefit breast cancer patients. We show that progesterone receptor (PR) signaling failed to induce RANKL in PR(+) breast cancer cell lines and in dissociated, cultured breast epithelial cells. In clinical specimens from healthy donors and intact breast tissue microstructures, hormone response was maintained and RANKL expression was under progesterone control, which increased RNA stability. RANKL was sufficient to trigger cell proliferation and was required for progesterone-induced proliferation. The findings were validated in vivo where RANKL protein expression in the breast epithelium correlated with serum progesterone levels and the protein was expressed in a subset of luminal cells that express PR. Thus, important hormonal control mechanisms are conserved across species, making RANKL a potential target in breast cancer treatment and prevention.
Resumo:
Purpose: To assess the clinical outcome of patients who were subjected to long-axis sacroplasty as first line treatment for sacral insufficiency fractures. Methods and materials: Nineteen patients with unilateral (n = 3) or bilateral (n = 16) sacral fractures were involved. Under local anaesthesia, each patient was subjected to CT guided sacroplasty using the long-axis approach through a single entry point. An average of 6 ml of PMMA was delivered along the path of each sacral fracture. For each individual patient, the VAS pain score before sacroplasty and at 1, 4, 24, and 48 weeks after the procedure was obtained. Furthermore, the use of analgesics (narcotic/non-narcotic) along with the evolution of post interventional patient mobility before and after sacroplasty was also recorded. Results: The mean pre-procedure VAS score was 8 ± 1.9. This has rapidly declined in the first week after the procedure (mean 4 ± 1.5) followed by gradual decrease along the rest of follow-up period at 4 weeks (mean 3 ± 1.2), 24 weeks (mean 2 ± 1.3), and 48 weeks (mean 1.3 ± 1.4), respectively. Eleven (58%) patients were under narcotic analgesia before sacroplasty, whereas, 8 (42%) patients were using non-narcotics. Corresponding values after the procedure were 2/19 (10%) (narcotic) and 10/19 53% (non-narcotic). Seven (37%) patients did not address post-procedure analgesic use. The evolution of post interventional mobility was favourable in the study group since they revealed a significant improvement in their mobility point scale. Conclusion: Long-axis percutaneous sacroplasty is a suitable minimally invasive treatment option for patients who present with sacral insufficiency fractures. Future studies with larger patient number are warranted to grasp any potential limitations of this therapeutic approach.
Resumo:
It is well known that the renin-angiotensin system contributes to left ventricular hypertrophy and fibrosis, a major determinant of myocardial stiffness. TGF-β1 and renin-angiotensin system signaling alters the fibroblast phenotype by promoting its differentiation into morphologically distinct pathological myofibroblasts, which potentiates collagen synthesis and fibrosis and causes enhanced extracellular matrix deposition. However, the atrial natriuretic peptide, which is induced during left ventricular hypertrophy, plays an anti-fibrogenic and anti-hypertrophic role by blocking, among others, the TGF-β-induced nuclear localization of Smads. It is not clear how the hypertrophic and fibrotic responses are transcriptionally regulated. CLP-1, the mouse homolog of human hexamethylene bis-acetamide inducible-1 (HEXIM-1), regulates the pTEFb activity via direct association with pTEFb causing inhibition of the Cdk9-mediated serine 2 phosphorylation in the carboxyl-terminal domain of RNA polymerase II. It was recently reported that the serine kinase activity of Cdk9 not only targets RNA polymerase II but also the conserved serine residues of the polylinker region in Smad3, suggesting that CLP-1-mediated changes in pTEFb activity may trigger Cdk9-dependent Smad3 signaling that can modulate collagen expression and fibrosis. In this study, we evaluated the role of CLP-1 in vivo in induction of left ventricular hypertrophy in angiotensinogen-overexpressing transgenic mice harboring CLP-1 heterozygosity. We observed that introduction of CLP-1 haplodeficiency in the transgenic α-myosin heavy chain-angiotensinogen mice causes prominent changes in hypertrophic and fibrotic responses accompanied by augmentation of Smad3/Stat3 signaling. Together, our findings underscore the critical role of CLP-1 in remodeling of the genetic response during hypertrophy and fibrosis.
Resumo:
Le neuroblastome (NB) est la tumeur maligne solide extra-crânienne la plus fréquente chez le jeune enfant. L'évolution clinique est très hétérogène, et les NBs de haut risque échappent encore aux traitements les plus agressifs. Diverses études ont montré que les chimiokines et leurs récepteurs, particulièrement l'axe CXCR4/CXCL12, sont impliqués dans la progression tumorale. Dans le NB, l'expression de CXCR4 est corrélée à un pronostic défavorable. De récentes études ont identifié l'expression d'un autre récepteur, CXCR7, présentant une forte affinité pour le ligand CXCL12. Cependant, son implication potentielle dans l'agressivité des NBs reste encore inconnue. Notre étude a pour objectif d'analyser le rôle de CXCR7 dans le comportement malin du NB, et son influence sur la fonctionnalité de l'axe CXCR4/CXCL12. Les profils d'expression de CXCR7 et CXCL12 ont d'abord été évalués sur un large échantillonnage de tissus de NB, incluant des tissus de tumeurs primaires et de métastases, provenant de 156 patients. CXCL12 est fortement détecté dans les vaisseaux et le stroma des tumeurs. Contrairement à CXCR4, CXCR7 n'est que très faiblement exprimé par les tumeurs indifférenciées. Néanmoins, l'expression de CXCR7 augmente dans les tumeurs matures, et se trouve spécifiquement associée aux cellules neurales différentiées, telles que les cellules ganglionnaires. L'expression de CXCR7 est faiblement détectée dans un nombre réduit de lignées de NB, mais peut-être induite suite à des traitements avec des agents de différenciation in vitro. La surexpression de CXCR7, CXCR4 et une combinaison des deux récepteurs dans les lignées IGR-NB8 et SH-SY5Y a permis l'analyse de leur fonction respective. En réponse à leur ligand commun, chaque récepteur induit l'activation de la voie ERK 1/2, mais pas celle de la voie Akt. Contrairement à CXCR4, l'expression exogène de CXCR7 réduit fortement la prolifération des cellules de NB in vitro, et in vivo dans un modèle d'injection sous-cutanée de. souris immunodéprimées. CXCR7 altère également la migration des cellules induite par l'axe CXCR4/CXCL12. De plus, l'utilisation d'un modèle orthotopique murin a démontré que la croissance tumorale induite par CXCR4 peut être fortement retardée lorsque les deux récepteurs sont co-exprimés dans les cellules de NB. Aucune induction de métastases n'a pu être observée dans ce modèle. Cette étude a permis d'identifier un profil d'expression opposé et des rôles distincts pour CXCR7 et CXCR4 dans le NB. En effet, contrairement à CXCR4, CXCR7 présente des propriétés non tumorigéniques et peut être associé au processus de différenciation du NB. De plus, nos analyses suggèrent que CXCR7 peut réguler les mécanismes induits par CXCR4. Ces données ouvrent donc de nouvelles perspectives de recherche quant au rôle de l'axe CXCR7/CXCR4/CXCL12 dans la biologie des NBs. - Neuroblastoma (NB) is a typical childhood and heterogeneous neoplasm for which efficient targeted therapy for high-risk tumours is not yet identified. The chemokine CXCL12, and its receptors CXCR4 and CXCR7 have been involved in tumour progression and dissemination in various cancer models. In the context of NB, CXCR4 expression is associated to undifferentiated tumours and poor prognosis, while the role of CXCR7, the recently identified second CXCL12 receptor, has not yet been elucidated. In this report, CXCR7 and CXCL12 expression were evaluated using a tissue micro-array (TMA) including 156 primary and 56 metastatic NB tissues. CXCL12 was found to be highly associated to NB vascular and stromal structures. In opposite to the CXCR4 expression pattern, the neural-associated CXCR7 expression was extremely low in undifferentiated tumours, while its expression increased in maturated tissues and was specifically associated to the differentiated neural tumour cells. As determined by RT-PCR, CXCR7 expression was only found in a minority of NB cell lines. Moreover, its expression in two CXCR7-negative NB cell lines was further induce upon treatment with differentiation agents in vitro. The relative roles of the two CXCL12 receptors was further assessed by overexpressing individual CXCR7 or CXCR4 receptors, or a combination of both, in the IGR-NB8 and SH-SY5Y NB cell lines. In vitro functional analyses indicated that, in response to their common ligand, both receptors induced activation of ERK 1/2 cascade, but not Akt signaling pathway. CXCR7 strongly reduced in vitro growth, in contrast to CXCR4. Sub-cutaneous implantations of CXCR7-expressing NB cells showed that CXCR7 also drastically reduced in vivo growth. Moreover, CXCR7 impaired CXCR4-mediated chemotaxis, and altered CXCR4-mediated growth when CXCR4/CXCR7-expressing NB cells were engrafted orthotopically in mouse adrenal gland, a CXCL12-producing environment. In such model, CXCR7 alone, or in association with CXCR4, did not induce NB cell metastatic dissemination. In conclusion, the CXCL12 receptors, CXCR7 and CXCR4, revealed opposite expression patterns and distinct functional roles in NB. While CXCR4 favours NB growth and chemotaxis, CXCR7 elicits anti-tumorigenic properties and may be associated with NB differentiation. Importantly, CXCR7 may act as a negative modulator of CXCR4 signaling, further opening new research perspectives for the role of the global CXCR7/CXCR4/CXCL12 axis in NB.
Resumo:
Arbuscular mycorrhizal fungi (AMF) form symbioses with the majority of plants and form extensive underground hyphal networks simultaneously connecting the roots of different plant species. No empirical evidence exists for either anastomosis between genetically different AMF or genetic exchange.Five isolates of one population of Glomus intraradices were used to study anastomosis between hyphae of germinating spores. We show that genetically distinct AMF, from the same field, anastomose, resulting in viable cytoplasmic connections through which genetic exchange could potentially occur.Pairs of genetically different isolates were then co-cultured in an in vitro system.Freshly produced spores were individually germinated to establish new cultures.Using several molecular tools, we show that genetic exchange occurred between genetically different AMF. Specific genetic markers from each parent were transmitted to the progeny. The progeny were viable, forming symbioses with plant roots. The phenotypes of some of the progeny were significantly different from either parent.Our results indicate that considerable promiscuity could occur in these fungi because nine out of 10 combinations of different isolates anastomosed. The ability to perform genetic crosses between AMF experimentally lays a foundation for understanding the genetics and evolutionary biology of these important plants symbionts.
Resumo:
Squamous cell carcinomas (SCCs) are highly heterogeneous tumours, resulting from deranged expression of genes involved in squamous cell differentiation. Here we report that microRNA-34a (miR-34a) functions as a novel node in the squamous cell differentiation network, with SIRT6 as a critical target. miR-34a expression increases with keratinocyte differentiation, while it is suppressed in skin and oral SCCs, SCC cell lines, and aberrantly differentiating primary human keratinocytes (HKCs). Expression of this miRNA is restored in SCC cells, in parallel with differentiation, by reversion of genomic DNA methylation or wild-type p53 expression. In normal HKCs, the pro-differentiation effects of increased p53 activity or UVB exposure are miR-34a-dependent, and increased miR-34a levels are sufficient to induce differentiation of these cells both in vitro and in vivo. SIRT6, a sirtuin family member not previously connected with miR-34a function, is a direct target of this miRNA in HKCs, and SIRT6 down-modulation is sufficient to reproduce the miR-34a pro-differentiation effects. The findings are of likely biological significance, as SIRT6 is oppositely expressed to miR-34a in normal keratinocytes and keratinocyte-derived tumours.
Resumo:
Epithelial-mesenchymal interactions are key to skin morphogenesis and homeostasis. We report that maintenance of the hair follicle keratinocyte cell fate is defective in mice with mesenchymal deletion of the CSL/RBP-Jkappa gene, the effector of "canonical" Notch signaling. Hair follicle reconstitution assays demonstrate that this can be attributed to an intrinsic defect of dermal papilla cells. Similar consequences on hair follicle differentiation result from deletion of Wnt5a, a specific dermal papilla signature gene that we found to be under direct Notch/CSL control in these cells. Functional rescue experiments establish Wnt5a as an essential downstream mediator of Notch-CSL signaling, impinging on expression in the keratinocyte compartment of FoxN1, a gene with a key hair follicle regulatory function. Thus, Notch/CSL signaling plays a unique function in control of hair follicle differentiation by the underlying mesenchyme, with Wnt5a signaling and FoxN1 as mediators.
Resumo:
In this article we present a method to achieve tri-dimensional contouring of macroscopic objects. A modified reference wave speckle interferometer is used in conjunction with a source of reduced coherence. The depth signal is given by the envelope of the interference signal, directly determined by the coherence length of the source. Fringes are detected in the interferogram obtained by a single shot and are detected by means of adequate filtering. With the approach based on off-axis configuration, a contour line can be extracted from a single acquisition, thus allowing to use the system in harsh environment. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Neuroblastoma (NB) is a typical childhood and heterogeneous neoplasm for which efficient targeted therapies for high-risk tumors are not yet identified. The chemokine CXCL12, and its receptors CXCR4 and CXCR7 have been involved in tumor progression and dissemination. While CXCR4 expression is associated to undifferentiated tumors and poor prognosis, the role of CXCR7, the recently identified second CXCL12 receptor, has not yet been elucidated in NB. In this report, CXCR7 and CXCL12 expressions were evaluated using a tissue micro-array including 156 primary and 56 metastatic NB tissues. CXCL12 was found to be highly associated to NB vascular and stromal structures. In contrast to CXCR4, CXCR7 expression was low in undifferentiated tumors, while its expression was stronger in matured tissues and specifically associated to differentiated neural tumor cells. As determined by RT-PCR, CXCR7 expression was mainly detected in N-and S-type NB cell lines, and was slightly induced upon NB cell differentiation in vitro. The relative roles of the two CXCL12 receptors were further assessed by overexpressing CXCR7 or CXCR4 receptor alone, or in combination, in the IGR-NB8 and the SH-SY5Y NB cell lines. In vitro functional analyses indicated that, in response to their common ligand, both receptors induced activation of ERK1/2 cascade, but not Akt pathway. CXCR7 strongly reduced in vitro growth, in contrast to CXCR4, and impaired CXCR4/CXCL12-mediated chemotaxis. Subcutaneous implantation of CXCR7-expressing NB cells showed that CXCR7 also significantly reduced in vivo growth. Moreover, CXCR7 affected CXCR4-mediated orthotopic growth in a CXCL12-producing environment. In such model, CXCR7, in association with CXCR4, did not induce NB cell metastatic dissemination. In conclusion, the CXCR7 and CXCR4 receptors revealed specific expression patterns and distinct functional roles in NB. Our data suggest that CXCR7 elicits anti-tumorigenic functions, and may act as a regulator of CXCR4/CXCL12-mediated signaling in NB.
Resumo:
Development of cardiac hypertrophy and progression to heart failure entails profound changes in myocardial metabolism, characterized by a switch from fatty acid utilization to glycolysis and lipid accumulation. We report that hypoxia-inducible factor (HIF)1alpha and PPARgamma, key mediators of glycolysis and lipid anabolism, respectively, are jointly upregulated in hypertrophic cardiomyopathy and cooperate to mediate key changes in cardiac metabolism. In response to pathologic stress, HIF1alpha activates glycolytic genes and PPARgamma, whose product, in turn, activates fatty acid uptake and glycerolipid biosynthesis genes. These changes result in increased glycolytic flux and glucose-to-lipid conversion via the glycerol-3-phosphate pathway, apoptosis, and contractile dysfunction. Ventricular deletion of Hif1alpha in mice prevents hypertrophy-induced PPARgamma activation, the consequent metabolic reprogramming, and contractile dysfunction. We propose a model in which activation of the HIF1alpha-PPARgamma axis by pathologic stress underlies key changes in cell metabolism that are characteristic of and contribute to common forms of heart disease.