6 resultados para variação latitudinal
em Université de Lausanne, Switzerland
Resumo:
Understanding the genetic underpinnings of adaptive change is a fundamental but largely unresolved problem in evolutionary biology. Drosophila melanogaster, an ancestrally tropical insect that has spread to temperate regions and become cosmopolitan, offers a powerful opportunity for identifying the molecular polymorphisms underlying clinal adaptation. Here, we use genome-wide next-generation sequencing of DNA pools ('pool-seq') from three populations collected along the North American east coast to examine patterns of latitudinal differentiation. Comparing the genomes of these populations is particularly interesting since they exhibit clinal variation in a number of important life history traits. We find extensive latitudinal differentiation, with many of the most strongly differentiated genes involved in major functional pathways such as the insulin/TOR, ecdysone, torso, EGFR, TGFβ/BMP, JAK/STAT, immunity and circadian rhythm pathways. We observe particularly strong differentiation on chromosome 3R, especially within the cosmopolitan inversion In(3R)Payne, which contains a large number of clinally varying genes. While much of the differentiation might be driven by clinal differences in the frequency of In(3R)P, we also identify genes that are likely independent of this inversion. Our results provide genome-wide evidence consistent with pervasive spatially variable selection acting on numerous loci and pathways along the well-known North American cline, with many candidates implicated in life history regulation and exhibiting parallel differentiation along the previously investigated Australian cline.
Resumo:
Attempts over the past 50 years to explain variation in the abundance, distribution and diversity of plant secondary compounds gave rise to theories of plant defense. Remarkably, few phylogenetically robust tests of these long-standing theories have been conducted. Using >50 species of milkweed (Asclepias spp.), we show that variation among plant species in the induction of toxic cardenolides is explained by latitude, with higher inducibility evolving more frequently at lower latitudes. We also found that: (1) the production of cardenolides showed positive-correlated evolution with the diversity of cardenolides, (2) greater cardenolide investment by a species is accompanied by an increase in an estimate of toxicity (measured as chemical polarity) and (3) instead of trading off, constitutive and induced cardenolides were positively correlated. Analyses of root and shoot cardenolides showed concordant patterns. Thus, milkweed species from lower latitudes are better defended with higher inducibility, greater diversity and added toxicity of cardenolides.
Resumo:
Understanding how natural environments shape phenotypic variation is a major aim in evolutionary biology. Here, we have examined clinal, likely genetically based variation in morphology among 19 populations of the fruit fly (Drosophila melanogaster) from Africa and Europe, spanning a range from sea level to 3000 m altitude and including locations approximating the southern and northern range limit. We were interested in testing whether latitude and altitude have similar phenotypic effects, as has often been postulated. Both latitude and altitude were positively correlated with wing area, ovariole number, and cell number. In contrast, latitude and altitude had opposite effects on the ratio between ovariole number and body size, which was negatively correlated with egg production rate per ovariole. We also used transgenic manipulation to examine how increased cell number affects morphology and found that larger transgenic flies, due to a higher number of cells, had more ovarioles, larger wings, and, unlike flies from natural populations, increased wing loading. Clinal patterns in morphology are thus not a simple function of changes in body size; instead, each trait might be subject to different selection pressures. Together, our results provide compelling evidence for profound similarities as well as differences between phenotypic effects of latitude and altitude.
Resumo:
Aim A debate exists as to whether present-day diversity gradients are governed by current environmental conditions or by changes in environmental conditions through time. Recent studies have shown that latitudinal richness gradients might be partially caused by incomplete post-glacial recolonization of high-latitude regions; this leads to the prediction that less mobile taxa should have steeper gradients than more mobile taxa. The aim of this study is to test this prediction. Location Europe. Methods We first assessed whether spatial turnover in species composition is a good surrogate for dispersal ability by measuring the proportion of wingless species in 19 European beetle clades and relating this value to spatial turnover (beta sim) of the clade. We then linearly regressed beta sim values of 21 taxa against the slope of their respective diversity gradients. Results A strong relationship exists between the proportion of wingless species and beta sim, and beta sim was found to be a good predictor of latitudinal richness gradients. Main conclusions Results are consistent with the prediction that poor dispersers have steeper richness gradients than good dispersers, supporting the view that current beetle diversity gradients in Europe are affected by post-glacial dispersal lags.
Resumo:
AimUnderstanding the relative contribution of diversification rates (speciation and extinction) and dispersal in the formation of the latitudinal diversity gradient - the decrease in species richness with increasing latitude - is a main goal of biogeography. The mammalian order Carnivora, which comprises 286 species, displays the traditional latitudinal diversity gradient seen in almost all mammalian orders. Yet the processes driving high species richness in the tropics may be fundamentally different in this group from that in other mammalian groups. Indeed, a recent study suggested that in Carnivora, unlike in all other major mammalian orders, net diversification rates are not higher in the tropics than in temperate regions. Our goal was thus to understand the reasons why there are more species of Carnivora in the tropics. LocationWorld-wide. MethodsWe reconstructed the biogeographical history of Carnivora using a time-calibrated phylogeny of the clade comprising all terrestrial species and dispersal-extinction-cladogenesis models. We also analysed a fossil dataset of carnivoran genera to examine how the latitudinal distribution of Carnivora varied through time. ResultsOur biogeographical analyses suggest that Carnivora originated in the East Palaearctic (i.e. Central Asia, China) in the early Palaeogene. Multiple independent lineages dispersed to low latitudes following three main paths: toward Africa, toward India/Southeast Asia and toward South America via the Bering Strait. These dispersal events were probably associated with local extinctions at high latitudes. Fossil data corroborate a high-latitude origin of the group, followed by late dispersal events toward lower latitudes in the Neogene. Main conclusionsUnlike most other mammalian orders, which originated and diversified at low latitudes and dispersed out of the tropics', Carnivora originated at high latitudes, and subsequently dispersed southward. Our study provides an example of combining phylogenetic and fossil data to understand the generation and maintenance of global-scale geographical variations in species richness.