103 resultados para vanadium oxide (VO2)

em Université de Lausanne, Switzerland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drug abuse is a widespread problem affecting both teenagers and adults. Nitrous oxide is becoming increasingly popular as an inhalation drug, causing harmful neurological and hematological effects. Some gas chromatography-mass spectrometry (GC-MS) methods for nitrous oxide measurement have been previously described. The main drawbacks of these methods include a lack of sensitivity for forensic applications; including an inability to quantitatively determine the concentration of gas present. The following study provides a validated method using HS-GC-MS which incorporates hydrogen sulfide as a suitable internal standard allowing the quantification of nitrous oxide. Upon analysis, sample and internal standard have similar retention times and are eluted quickly from the molecular sieve 5Å PLOT capillary column and the Porabond Q column therefore providing rapid data collection whilst preserving well defined peaks. After validation, the method has been applied to a real case of N2O intoxication indicating concentrations in a mono-intoxication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitric oxide (NO) is crucial for the microvascular homeostasis, but its role played in the microvascular alterations during sepsis remains controversial. We investigated NO-dependent vasodilation in the skin microcirculation and plasma levels of asymmetric dimethylarginine (ADMA), a potent endogenous inhibitor of the NO synthases, in a human model of sepsis. In this double-blind, randomized, crossover study, microvascular NO-dependent (local thermal hyperemia) and NO-independent vasodilation (post-occlusive reactive hyperemia) assessed by laser Doppler imaging, plasma levels of ADMA, and l-arginine were measured in seven healthy obese volunteers, immediately before and 4 h after either a i.v. bolus injection of Escherichia coli endotoxin (LPS; 2 ng/kg) or normal saline (placebo) on two different visits at least 2 weeks apart. LPS caused the expected systemic effects, including increases in heart rate (+43%, P < 0.001), cardiac output (+16%, P < 0.01), and rectal temperature (+1.4°C, P < 0.001), without change in arterial blood pressure. LPS affected neither baseline skin blood flow nor post-occlusive reactive hyperemia but decreased the NO-dependent local thermal hyperemia response, l-arginine, and, to a lesser extent, ADMA plasma levels. The changes in NO-dependent vasodilation were not correlated with the corresponding changes in the plasma levels of ADMA, l-arginine, or the l-arginine/ADMA ratio. Our results show for the first time that experimental endotoxemia in humans causes a specific decrease in endothelial NO-dependent vasodilation in the microcirculation, which cannot be explained by a change in ADMA levels. Microvascular NO deficiency might be responsible for the heterogeneity of tissue perfusion observed in sepsis and could be a therapeutic target.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoparticles (NPs) are being used or explored for the development of biomedical applications in diagnosis and therapy, including imaging and drug delivery. Therefore, reliable tools are needed to study the behavior of NPs in biological environment, in particular the transport of NPs across biological barriers, including the blood-brain tumor barrier (BBTB), a challenging question. Previous studies have addressed the translocation of NPs of various compositions across cell layers, mostly using only one type of cells. Using a coculture model of the human BBTB, consisting in human cerebral endothelial cells preloaded with ultrasmall superparamagnetic iron oxide nanoparticles (USPIO NPs) and unloaded human glioblastoma cells grown on each side of newly developed ultrathin permeable silicon nitride supports as a model of the human BBTB, we demonstrate for the first time the transfer of USPIO NPs from human brain-derived endothelial cells to glioblastoma cells. The reduced thickness of the permeable mechanical support compares better than commercially available polymeric supports to the thickness of the basement membrane of the cerebral vascular system. These results are the first report supporting the possibility that USPIO NPs could be directly transferred from endothelial cells to glioblastoma cells across a BBTB. Thus, the use of such ultrathin porous supports provides a new in vitro approach to study the delivery of nanotherapeutics to brain cancers. Our results also suggest a novel possibility for nanoparticles to deliver therapeutics to the brain using endothelial to neural cells transfer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS: Experimental autoimmune myocarditis (EAM) model mirrors important mechanisms of inflammatory dilated cardiomyopathy (iDCM). In EAM, inflammatory CD133(+) progenitors are a major cellular source of cardiac myofibroblasts in the post-inflammatory myocardium. We hypothesized that exogenous delivery of macrophage-colony-stimulating factor (M-CSF) can stimulate macrophage lineage differentiation of inflammatory progenitors and, therefore, prevent their naturally occurring myofibroblast fate in EAM. METHODS AND RESULTS: EAM was induced in wild-type (BALB/c) and nitric oxide synthase 2-deficient (Nos2(-/-)) mice and CD133(+) progenitors were isolated from inflamed hearts. In vitro, M-CSF converted inflammatory CD133(+) progenitors into nitric oxide-producing F4/80(+) macrophages and prevented transforming growth factor-β-mediated myofibroblast differentiation. Importantly, only a subset of heart-infiltrating CD133(+) progenitors expresses macrophage-specific antigen F4/80 in EAM. These CD133(+)/F4/80(hi) cells show impaired myofibrogenic potential compared with CD133(+)/F4/80(-) cells. M-CSF treatment of wild-type mice with EAM at the peak of disease markedly increased CD133(+)/F4/80(hi) cells in the myocardium, and CD133(+) progenitors isolated from M-CSF-treated mice failed to differentiate into myofibroblasts. In contrast, M-CSF was not effective in converting CD133(+) progenitors from inflamed hearts of Nos2(-/-) mice into macrophages, and M-CSF treatment did not result in increased CD133(+)/F4/80(hi) cell population in hearts of Nos2(-/-) mice. Accordingly, M-CSF prevented post-inflammatory fibrosis and left ventricular dysfunction in wild-type but not in Nos2(-/-) mice. CONCLUSION: Active and NOS2-dependent induction of macrophage lineage differentiation abrogates the myofibrogenic potential of heart-infiltrating CD133(+) progenitors. Modulating the in vivo differentiation fate of specific progenitors might become a novel approach for the treatment of inflammatory heart diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Therapeutic drug monitoring (TDM) may contribute to optimizing the efficacy and safety of antifungal therapy because of the large variability in drug pharmacokinetics. Rapid, sensitive, and selective laboratory methods are needed for efficient TDM. Quantification of several antifungals in a single analytical run may best fulfill these requirements. We therefore developed a multiplex ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method requiring 100 μl of plasma for simultaneous quantification within 7 min of fluconazole, itraconazole, hydroxyitraconazole, posaconazole, voriconazole, voriconazole-N-oxide, caspofungin, and anidulafungin. Protein precipitation with acetonitrile was used in a single extraction procedure for eight analytes. After reverse-phase chromatographic separation, antifungals were quantified by electrospray ionization-triple-quadrupole mass spectrometry by selected reaction monitoring detection using the positive mode. Deuterated isotopic compounds of azole antifungals were used as internal standards. The method was validated based on FDA recommendations, including assessment of extraction yields, matrix effect variability (<9.2%), and analytical recovery (80.1 to 107%). The method is sensitive (lower limits of azole quantification, 0.01 to 0.1 μg/ml; those of echinocandin quantification, 0.06 to 0.1 μg/ml), accurate (intra- and interassay biases of -9.9 to +5% and -4.0 to +8.8%, respectively), and precise (intra- and interassay coefficients of variation of 1.2 to 11.1% and 1.2 to 8.9%, respectively) over clinical concentration ranges (upper limits of quantification, 5 to 50 μg/ml). Thus, we developed a simple, rapid, and robust multiplex UPLC-MS/MS assay for simultaneous quantification of plasma concentrations of six antifungals and two metabolites. This offers, by optimized and cost-effective lab resource utilization, an efficient tool for daily routine TDM aimed at maximizing the real-time efficacy and safety of different recommended single-drug antifungal regimens and combination salvage therapies, as well as a tool for clinical research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Astrocytes exhibit a prominent glycolytic activity, but whether such a metabolic profile is influenced by intercellular communication is unknown. Treatment of primary cultures of mouse cortical astrocytes with the nitric oxide (NO) donor DetaNONOate induced a time-dependent enhancement in the expression of genes encoding various glycolytic enzymes as well as transporters for glucose and lactate. Such an effect was shown to be dependent on the hypoxia-inducible factor HIF-1α, which is stabilized and translocated to the nucleus to exert its transcriptional regulation. NO action was dependent on both the PI3K/Akt/mTOR and MEK signaling pathways and required the activation of COX, but was independent of the soluble guanylate cyclase pathway. Furthermore, as a consequence of NO treatment, an enhanced lactate production and release by astrocytes was evidenced, which was prevented by downregulating HIF-1α. Several brain cell types represent possible sources of NO. It was found that endothelial cells, which express the endothelial NO synthase (eNOS) isoform, constitutively produced the largest amount of NO in culture. When astrocytes were cocultured with primary cultures of brain vascular endothelial cells, stabilization of HIF-1α and an enhancement in glucose transporter-1, hexokinase-2, and monocarboxylate transporter-4 expression as well as increased lactate production was found in astrocytes. This effect was inhibited by the NOS inhibitor l-NAME and was not seen when astrocytes were cocultured with primary cultures of cortical neurons. Our findings suggest that endothelial cell-derived NO participates to the maintenance of a high glycolytic activity in astrocytes mediated by astrocytic HIF-1α activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-altitude pulmonary edema (HAPE) is a life-threatening condition occurring in predisposed subjects at altitudes above 2,500 m. It is not clear whether, in addition to hemodynamic factors and defective alveolar fluid clearance, inflammation plays a pathogenic role in HAPE. We therefore made serial measurements of exhaled pulmonary nitric oxide (NO), a marker of airway inflammation, in 28 HAPE-prone and 24 control subjects during high-altitude exposure (4,559 m). To examine the relationship between pulmonary NO synthesis and pulmonary vascular tone, we also measured systolic pulmonary artery pressure (Ppa). In the 13 subjects who developed HAPE, exhaled NO did not show any tendency to increase during the development of lung edema. Throughout the entire sojourn at high altitude, pulmonary exhaled NO was roughly 30% lower in HAPE-prone than in control subjects, and there existed an inverse relationship between Ppa and exhaled NO (r = -0.51, p < 0.001). These findings suggest that HAPE is not preceded by airway inflammation. Reduced exhaled NO may be related to altered pulmonary NO synthesis and/or transport and clearance, and the data in our study could be consistent with the novel concept that in HAPE-prone subjects, a defect in pulmonary epithelial NO synthesis may contribute to exaggerated hypoxic pulmonary vasoconstriction and in turn to pulmonary edema.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitric oxide (NO) and NO-derived reactive nitrogen species (RNS) are present in the food vacuole (FV) of Plasmodium falciparum trophozoites. The product of PFL1555w, a putative cytochrome b(5), localizes in the FV membrane, similar to what was previously observed for the product of PF13_0353, a putative cytochrome b(5) reductase. These two gene products may contribute to NO generation by denitrification chemistry from nitrate and/or nitrite present in the erythrocyte cytosol. The possible coordination of NO to heme species present in the food vacuole was probed by resonance Raman spectroscopy. The spectroscopic data revealed that in situ generated NO interacts with heme inside the intact FVs to form ferrous heme nitrosyl complexes that influence intra-vacuolar heme solubility. The formation of heme nitrosyl complexes within the FV is a previously unrecognized factor that could affect the equilibrium between soluble and crystallized heme within the FV in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adverse events in utero are associated with the occurrence of chronic diseases in adulthood. We previously demonstrated in mice that perinatal hypoxia resulted in altered pulmonary circulation in adulthood, with a decreased endothelium-dependent relaxation of pulmonary arteries, associated with long-term alterations in the nitric oxide (NO)/cyclic GMP pathway. The present study investigated whether inhaled NO (iNO) administered simultaneously to perinatal hypoxia could have potential beneficial effects on the adult pulmonary circulation. Indeed, iNO is the therapy of choice in humans presenting neonatal pulmonary hypertension. Long-term effects of neonatal iNO therapy on adult pulmonary circulation have not yet been investigated. Pregnant mice were placed in hypoxia (13% O2) with simultaneous administration of iNO 5 days before delivery until 5 days after birth. Pups were then raised in normoxia until adulthood. Perinatal iNO administration completely restored acetylcholine-induced relaxation, as well as endothelial nitric oxide synthase protein content, in isolated pulmonary arteries of adult mice born in hypoxia. Right ventricular hypertrophy observed in old mice born in hypoxia compared to controls was also prevented by perinatal iNO treatment. Therefore, simultaneous administration of iNO during perinatal hypoxic exposure seems able to prevent adverse effects of perinatal hypoxia on the adult pulmonary circulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitric oxide (NO) and monocyte chemoattractant protein-1 (MCP-1) exert partly opposing effects in vascular biology. NO plays pleiotropic vasoprotective roles including vasodilation and inhibition of platelet aggregation, smooth muscle cell proliferation, and endothelial monocyte adhesion, the last effect being mediated by MCP-1 downregulation. Early stages of arteriosclerosis are associated with reduced NO bioactivity and enhanced MCP-1 expression. We have evaluated adenovirus-mediated gene transfer of human endothelial NO synthase (eNOS) and of a N-terminal deletion (8ND) mutant of the MCP-1 gene that acts as a MCP-1 inhibitor in arteriosclerosis-prone, apolipoprotein E-deficient (ApoE(-/-)) mice. Endothelium-dependent relaxations were impaired in carotid arteries instilled with a noncoding adenoviral vector but were restored by eNOS gene transfer (p < 0.01). A perivascular collar was placed around the common carotid artery to accelerate lesion formation. eNOS gene transfer reduced lesion surface areas, intima/media ratios, and macrophage contents in the media at 5-week follow-up (p < 0.05). In contrast, 8ND-MCP-1 gene transfer did not prevent lesion formation. In conclusion, eNOS gene transfer restores endothelium-dependent vasodilation and inhibits lesion formation in ApoE(-/-) mouse carotids. Further studies are needed to assess whether vasoprotection is maintained at later disease stages and to evaluate the long-term efficacy of eNOS gene therapy for primary arteriosclerosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To determine whether bovine corneal endothelial (BCE) cells and keratocytes express the inducible form of nitric oxide synthase (NOS) after exposure to cytokines and lipopolysaccharide (LPS), and to study the regulation of NOS by growth factors. METHODS: Cultures of bovine corneal endothelial cells and keratocytes were exposed to increasing concentrations of LPS, interferon-gamma (IFN-gamma), and tumor necrosis factor-alpha (TNF-alpha). At selected intervals after exposure, nitrite levels in the supernatants were evaluated by the Griess reaction. Total RNA was extracted from the cell cultures, and messenger RNA levels for inducible NOS (NOS-2) were measured by reverse transcription-polymerase chain reaction (RT-PCR). RESULTS: Exposure of BCE cells and keratocytes to LPS and IFN-gamma resulted in an increase of nitrite levels that was potentiate by the addition of TNF-alpha. Analysis by RT-PCR demonstrated that nitrite release was correlated to the expression of NOS-2 messenger RNA in BCE cells and keratocytes. Stereoselective inhibitors of NOS and cycloheximide inhibited LPS-IFN-gamma-induced nitrite release in both cells, whereas transforming growth factor-beta (TGF-beta) slightly potentiated it. Fibroblast growth factor-2 (FGF-2) inhibited LPS-IFN-gamma-induced nitrite release and NOS-2 messenger RNA accumulation in keratocytes but not in BCE cells. CONCLUSIONS: The results demonstrate that in vitro activation of keratocytes and BCE cells by LPS and cytokines induces NOS-2 expression and release of large amounts of NO. The high amounts of NO could be involved in inflammatory corneal diseases in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic administration of recombinant human erythropoietin (rHuEPO) can generate serious cardiovascular side effects such as arterial hypertension (HTA) in clinical and sport fields. It is hypothesized that nitric oxide (NO) can protect from noxious cardiovascular effects induced by chronic administration of rHuEPO. On this base, we studied the cardiovascular effects of chronic administration of rHuEPO in exercise-trained rats treated with an inhibitor of NO synthesis (L-NAME). Rats were treated or not with rHuEPO and/or L-NAME during 6 weeks. During the same period, rats were subjected to treadmill exercise. The blood pressure was measured weekly. Endothelial function of isolated aorta and small mesenteric arteries were studied and the morphology of the latter was investigated. L-NAME induced hypertension (197 ± 6 mmHg, at the end of the protocol). Exercise prevented the rise in blood pressure induced by L-NAME (170 ± 5 mmHg). However, exercise-trained rats treated with both rHuEPO and L-NAME developed severe hypertension (228 ± 9 mmHg). Furthermore, in these exercise-trained rats treated with rHuEPO/L-NAME, the acetylcholine-induced relaxation was markedly impaired in isolated aorta (60% of maximal relaxation) and small mesenteric arteries (53%). L-NAME hypertension induced an internal remodeling of small mesenteric arteries that was not modified by exercise, rHuEPO or both. Vascular ET-1 production was not increased in rHuEPO/L-NAME/training hypertensive rats. Furthermore, we observed that rHuEPO/L-NAME/training hypertensive rats died during the exercise or the recovery period (mortality 51%). Our findings suggest that the use of rHuEPO in sport, in order to improve physical performance, represents a high and fatal risk factor, especially with pre-existing cardiovascular risk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The monocarboxylate transporter MCT4 is a proton-linked carrier particularly important for lactate release from highly glycolytic cells. In the central nervous system, MCT4 is exclusively expressed by astrocytes. Surprisingly, MCT4 expression in primary cultures of mouse cortical astrocytes is conspicuously low, suggesting that an external, nonastrocytic signal is necessary to obtain the observed pattern of expression in vivo. Here, we demonstrate that nitric oxide (NO), delivered by various NO donors, time- and dose-dependently induces MCT4 expression in cultured cortical astrocytes both at the mRNA and protein levels. In contrast, NO does not enhance the expression of MCT1, the other astrocytic monocarboxylate transporter. The transcriptional effect of NO is not mediated by a cGMP-dependent mechanism as shown by the absence of effect of a cGMP analog or of a selective guanylate cyclase inhibitor. NO causes an increase in astrocytic lactate transport capacity which requires the enhancement of MCT4 expression as both are prevented by the use of a specific siRNA against MCT4. In addition, cumulated lactate release by astrocytes over a period of 24 h was also enhanced by NO treatment. Our data suggest that NO represents a putative intercellular signal to control MCT4 expression in astrocytes and in doing so, to facilitate lactate transfer to other surrounding cell types in the central nervous system. © 2011 Wiley-Liss, Inc.