41 resultados para ultraviolet derivative spectrophotometry
em Université de Lausanne, Switzerland
Resumo:
Carcinoembryonic antigen (CEA), immunologically identical to CEA derived from colonic carcinoma, was identified and purified from perchloric acid (PCA) extracts of bronchial and mammary carcinoma. CEA extracted from bronchial and mammary carcinoma was quantitated by single radial immunodiffusion and was found to be in average about 50-75 times less abundant in these tumors than in colonic carcinoma. CEA could also be detected in one normal breast in lactation and at lower concentrations in normal lung (1000-4000 times lower than in colonic carcinoma). The small amounts of CEA present in normal tissues are distinct from the glycoprotein of small mol. wt showing only partial identity with CEA, that we recently identified and extracted in much larger quantities from normal lung and spleen. The demonstration of the presence of CEA in non digestive carcinoma by classical gel precipitation analysis suggests that the CEA detected in the plasma of such patients by radioimmunoassay is also identical to colonic carcinoma CEA. Our comparative study of plasma CEA from bronchial and colonic carcinoma, showing that CEA from both types of patient has the same elution pattern on Sephadex G-200 and gives parallel inhibition curves in the radioimmunoassay, is in favor of this hypothesis. However, it should not be concluded that all positive CEA radioimmunoassay indicate the presence of an antigen identical to colonic carcinoma CEA. A word of warning concerning the interpretation of radioimmunoassay is required by the observation that the addition of mg amounts of PCA extract of normal plasma, cleared of CEA by Sephadex filtration, could interfere in the test and mimic the presence of CEA.
Resumo:
Retroviral transfer of T cell antigen receptor (TCR) genes selected by circumventing tolerance to broad tumor- and leukemia-associated antigens in human leukocyte antigen (HLA)-A*0201 (A2.1) transgenic (Tg) mice allows the therapeutic reprogramming of human T lymphocytes. Using a human CD8 x A2.1/Kb mouse derived TCR specific for natural peptide-A2.1 (pA2.1) complexes comprising residues 81-88 of the human homolog of the murine double-minute 2 oncoprotein, MDM2(81-88), we found that the heterodimeric CD8 alpha beta coreceptor, but not normally expressed homodimeric CD8 alpha alpha, is required for tetramer binding and functional redirection of TCR- transduced human T cells. CD8+T cells that received a humanized derivative of the MDM2 TCR bound pA2.1 tetramers only in the presence of an anti-human-CD8 anti-body and required more peptide than wild-type (WT) MDM2 TCR+T cells to mount equivalent cytotoxicity. They were, however, sufficiently effective in recognizing malignant targets including fresh leukemia cells. Most efficient expression of transduced TCR in human T lymphocytes was governed by mouse as compared to human constant (C) alphabeta domains, as demonstrated with partially humanized and murinized TCR of primary mouse and human origin, respectively. We further observed a reciprocal relationship between the level of Tg WT mouse relative to natural human TCR expression, resulting in T cells with decreased normal human cell surface TCR. In contrast, natural human TCR display remained unaffected after delivery of the humanized MDM2 TCR. These results provide important insights into the molecular basis of TCR gene therapy of malignant disease.
Resumo:
The molecular basis of glycopeptide-intermediate S. aureus (GISA) isolates is not well defined though frequently involves phenotypes such as thickened cell walls and decreased autolysis. We have exploited an isogenic pair of teicoplanin-susceptible (strain MRGR3) and teicoplanin-resistant (strain 14-4) methicillin-resistant S. aureus strains for detailed transcriptomic profiling and analysis of altered autolytic properties. Strain 14-4 displayed markedly deficient Triton X-100-triggered autolysis compared to its teicoplanin-susceptible parent, although microarray analysis paradoxically did not reveal significant reductions in expression levels of major autolytic genes atl, lytM, and lytN, except for sle1, which showed a slight decrease. The most important paradox was a more-than-twofold increase in expression of the cidABC operon in 14-4 compared to MRGR3, which was correlated with decreased expression of autolysis negative regulators lytSR and lrgAB. In contrast, the autolysis-deficient phenotype of 14-4 was correlated with both increased expression of negative autolysis regulators (arlRS, mgrA, and sarA) and decreased expression of positive regulators (agr RNAII and RNAIII). Quantitative bacteriolytic assays and zymographic analysis of concentrated culture supernatants showed a striking reduction in Atl-derived, extracellular bacteriolytic hydrolase activities in 14-4 compared to MRGR3. This observed difference was independent of the source of cell wall substrate (MRGR3 or 14-4) used for analysis. Collectively, our results suggest that altered autolytic properties in 14-4 are apparently not driven by significant changes in the transcription of key autolytic effectors. Instead, our analysis points to alternate regulatory mechanisms that impact autolysis effectors which may include changes in posttranscriptional processing or export.
Resumo:
Ultraviolet-C irradiation as a method to induce the production of plant compounds with antifungal properties was investigated in the leaves of 18 plant species. A susceptibility assay to determine the antifungal susceptibility of filamentous fungi was developed based on an agar dilution series in microtiter plates. UV irradiation strongly induced antifungal properties in five species against a clinical Fusarium solani strain that was responsible for an onychomycosis case that was resistant to classic pharmacological treatment. The antifungal properties of three additional plant species were either unaffected or reduced by UV-C irradiation. This study demonstrates that UV-C irradiation is an effective means of modulating the antifungal activity of very diverse plants from a screening perspective.
Resumo:
The preparation of a novel radioiodination reagent, the (aminooxy)acetyl derivative of (p-[125]-iodophenyl)ethylamine, is described. Conventional radioiodination of proteins involves the formation of iodotyrosine residues, but for in vivo applications such as thyroid or stomach immunoscintigraphy, the susceptibility of these residues to tissue dehalogenases constitutes a serious disadvantage. Using our new compound, which has a particularly nonreactive aromatic ring, we confirm and extend studies published by other workers indicating the much greater in vivo stability of iodophenyl compounds compared to the more conventional iodophenolic ones. In addition, the aminooxy group of our reagent gives a stable and specific linkage to aldehyde groups formed by periodate oxidation on the sugar moiety of antibody molecules. In vitro, favorable binding activity and high stability was obtained with a (([125I]iodoaryl)amino)oxy labeled monoclonal antibody directed against carcinoembryonic antigen. In vivo, using paired labeling experiments in nude mice bearing colon carcinoma xenografts, the (([125I]iodoaryl)amino)oxy-MAb (MAb = monoclonal antibody) was compared with the same MAb 131I-labeled by conventional chloramine-T method. Tumor 125I concentration of (arylamino)oxy MAb (measured as percent injected dose per gram) was significantly higher as compared to values obtained with a conventionally labeled 131I antibody. Additionally, thyroid uptake, an indicator of iodine release from the antibody, was up to 25 times lower after injection of 125I-MAb obtained by the new method as compared to the conventionally iodinated 131I-MAb.
Resumo:
Question: Is ultraviolet (UV) reflectance of melanin-based plumage ornaments heritable? Data studied: We considered the barn owl (Two alba), a species that varies continuously from white to reddish-brown, a pheomelanin-based trait. Methods: To perform a partial cross-fostering experiment. we exchanged one to three hatchlings between 16 pairs of nests with a similar hatching date. This experiment allocated hatchlings randomly among rearing environments. Forty-nine days later, we collected three feathers per individual to measure UV reflectance. Conclusions: The cross-fostering experiment showed that. independently of human-visible coloration, variation in UV reflectance is significantly sensitive to origin-related factors.
Resumo:
Using a direct binding assay based on photoaffinity labeling, we have studied the interaction of an antigenic peptide with MHC class I molecules and the TCR on living cells. Two photoreactive derivatives of the H-2Kd (Kd) restricted Plasmodium berghei circumsporozoite (PbCS) peptide 253-260 (YIPSAEKI) were used. The first derivative contained an N-terminal photoreactive iodo, 4-azido salicyloyl (IASA) group and biotin on the TCR contact residue Lys259 [IASA-YIPSAEK(biotin)I]. As previously described, this derivative selectively bound to and labeled the Kd molecule. The second photoreactive compound, the isomeric biotin-YIPSAEK(IASA)I, also efficiently bound to the Kd molecule, but failed to label this protein. A CTL clone derived from a mouse immunized with this derivative recognized this conjugate but not the parental P. berghei circumsporozoite peptide or the [IASA-YIPSAEK-(biotin)I] derivative in an Kd-restricted manner. Incubation of the cloned CTL cells with biotin-YIPSAEK(IASA)I, but not its isomer, followed by UV irradiation resulted in photoaffinity labeling of the TCR-alpha chain that was dependent on the conjugate binding to the Kd molecule. The TCR labeling was partially inhibited by anti-LFA 1 and anti-ICAM1 mAb, but was increased by addition of beta 2m or soluble KdQ10. The exquisite labeling selectivity of the two photoprobes opens a new, direct approach to the molecular analysis of antigen presentation and recognition by living CTL.
Resumo:
We describe the preparation of the modified chelator aminooxyacetyl-ferrioxamine, and the replacement of its iron atom by 67Ga at high specific activity. The aminooxy function of this compound was allowed to react with the aldehyde groups generated by the periodate oxidation of the oligosaccharide of a mouse IgG1 monoclonal antibody (MAb) directed against carcino-embryonic antigen (CEA). The use of the aminooxy group allowed a stable bond to be formed between the chelon and the antibody with no need for reduction. Iron was removed from the ferrioxamine moiety and replaced by 67Ga either before or after conjugation of the chelon to the antibody. In either case the labelled antibody was injected into nude mice bearing a human colon carcinoma having the appropriate antigenicity. Unoxidized antibody, labelled with 125I by conventional methods, was co-injected as an internal control. Additional control experiments were carried out with a non-immune IgG using the same 67Ga-labelled modified chelon as above. The in vivo distribution of the modified antibodies was evaluated at various times between 24 and 96 hr after injection. The methods used were gamma-camera imaging and, more quantitatively, gamma-counting of the various organs after dissection. Interestingly, with the metal-chelon-labelled antibody, the intensity and specificity of tumor labelling was comparable and in some cases superior to the results obtained with radio-iodinated antibody. In particular, there was almost no increase in liver and spleen uptake of radioactive metal relative to radio-iodine, contrary to what has been observed with most antibodies labelled with 111In after conjugation with DTPA.
Resumo:
The impact of biocontrol strain Pseudomonas fluorescens CHA0 and of its genetically modified, antibiotic-overproducing derivative CHA0/pME3424 on a reconstructed population of the plant-beneficial Sinorhizobium meliloti bacteria was assessed in gnotobiotic systems. In sterile soil, the final density of the reconstructed S. meliloti population decreased by more than one order of magnitude in the presence of either of the Pseudomonas strains when compared to a control without addition of P. fluorescens. Moreover, there was a change in the proportion of each individual S. meliloti strain within the population. Plant tests also revealed changes in the nodulating S. meliloti population in the presence of strains CHA0 or CHA0/pME3424. In both treatments one S. meliloti strain, f43, was significantly reduced in its root nodule occupancy. Analysis of alfalfa yields showed a slight but statistically significant increase in shoot dry weight when strain CHA0 was added to the reconstructed S. meliloti population whereas no such effect was observed with CHA0/pME3424.
Resumo:
To study the interaction of T cell receptor with its ligand, a complex of a major histocompatibility complex molecule and a peptide, we derived H-2Kd-restricted cytolytic T lymphocyte clones from mice immunized with a Plasmodium berghei circumsporozoite peptide (PbCS) 252-260 (SYIPSAEKI) derivative containing photoreactive Nepsilon-[4-azidobenzoyl] lysine in place of Pro-255. This residue and Lys-259 were essential parts of the epitope recognized by these clones. Most of the clones expressed BV1S1A1 encoded beta chains along with specific complementary determining region (CDR) 3beta regions but diverse alpha chain sequences. Surprisingly, all T cell receptors were preferentially photoaffinity labeled on the alpha chain. For a representative T cell receptor, the photoaffinity labeled site was located in the Valpha C-strand. Computer modeling suggested the presence of a hydrophobic pocket, which is formed by parts of the Valpha/Jalpha C-, F-, and G-strands and adjacent CDR3alpha residues and structured to be able to avidly bind the photoreactive ligand side chain. We previously found that a T cell receptor specific for a PbCS peptide derivative containing this photoreactive side chain in position 259 similarly used a hydrophobic pocket located between the junctional CDR3 loops. We propose that this nonpolar domain in these locations allow T cell receptors to avidly and specifically bind epitopes containing non-peptidic side chains.
Resumo:
Aggregation-prone polyglutamine (polyQ) expansion proteins cause several neurodegenerative disorders, including Huntington disease. The pharmacological activation of cellular stress responses could be a new strategy to combat protein conformational diseases. Hydroxylamine derivatives act as co-inducers of heat-shock proteins (HSPs) and can enhance HSP expression in diseased cells, without significant adverse effects. Here, we used Caenorhabditis elegans expressing polyQ expansions with 35 glutamines fused to the yellow fluorescent protein (Q35-YFP) in body wall muscle cells as a model system to investigate the effects of treatment with a novel hydroxylamine derivative, NG-094, on the progression of polyQ diseases. NG-094 significantly ameliorated polyQ-mediated animal paralysis, reduced the number of Q35-YFP aggregates and delayed polyQ-dependent acceleration of aging. Micromolar concentrations of NG-094 in animal tissues with only marginal effects on the nematode fitness sufficed to confer protection against polyQ proteotoxicity, even when the drug was administered after disease onset. NG-094 did not reduce insulin/insulin-like growth factor 1-like signaling, but conferred cytoprotection by a mechanism involving the heat-shock transcription factor HSF-1 that potentiated the expression of stress-inducible HSPs. NG-094 is thus a promising candidate for tests on mammalian models of polyQ and other protein conformational diseases.
Resumo:
To study the interaction of the TCR with its ligand, the complex of a MHC molecule and an antigenic peptide, we modified a TCR contact residue of a H-2Kd-restricted antigenic peptide with photoreactive 4-azidobenzoic acid. The photoreactive group was a critical component of the epitope recognized by CTL clones derived from mice immunized with such a peptide derivative. The majority of these clones expressed V beta 1-encoded beta chains that were paired with J alpha TA28-encoded alpha chains. For one of these TCR, the photoaffinity labeled sites were mapped on the alpha chain as a J alpha TA28-encoded tryptophan and on the beta chain as a residue of the C' strand of V beta 1. Molecular modeling of this TCR suggested the presence of a hydrophobic pocket that harbors this tryptophan as well as a tyrosine on the C' strand of V beta 1 between which the photoreactive side chain inserts. It is concluded that this avid binding principle may account for the preferential selection of V beta 1 and J alpha TA28-encoded TCR.
Resumo:
Photons participate in many atomic and molecular interactions and processes. Recent biophysical research has discovered an ultraweak radiation in biological tissues. It is now recognized that plants, animal and human cells emit this very weak biophotonic emission which can be readily measured with a sensitive photomultiplier system. UVA laser induced biophotonic emission of cultured cells was used in this report with the intention to detect biophysical changes between young and adult fibroblasts as well as between fibroblasts and keratinocytes. With suspension densities ranging from 1-8 x 106 cells/ml, it was evident that an increase of the UVA-laser-light induced photon emission intensity could be observed in young as well as adult fibroblastic cells. By the use of this method to determine ultraweak light emission, photons in cell suspensions in low volumes (100 microl) could be detected, in contrast to previous procedures using quantities up to 10 ml. Moreover, the analysis has been further refined by turning off the photomultiplier system electronically during irradiation leading to the first measurements of induced light emission in the cells after less than 10 micros instead of more than 100 milliseconds. These significant changes lead to an improvement factor up to 106 in comparison to classical detection procedures. In addition, different skin cells as fibroblasts and keratinocytes stemming from the same donor were measured using this new highly sensitive method in order to find new biophysical insight of light pathways. This is important in view to develop new strategies in biophotonics especially for use in alternative therapies.
Resumo:
Exposure to solar ultraviolet (UV) radiation is the main causative factor for skin cancer. UV exposure depends on environmental and individual factors, but individual exposure data remain scarce. While ground UV irradiance is monitored via different techniques, it is difficult to translate such observations into human UV exposure or dose because of confounding factors. A multi-disciplinary collaboration developed a model predicting the dose and distribution of UV exposure on the basis of ground irradiation and morphological data. Standard 3D computer graphics techniques were adapted to develop a simulation tool that estimates solar exposure of a virtual manikin depicted as a triangle mesh surface. The amount of solar energy received by various body locations is computed for direct, diffuse and reflected radiation separately. Dosimetric measurements obtained in field conditions were used to assess the model performance. The model predicted exposure to solar UV adequately with a symmetric mean absolute percentage error of 13% and half of the predictions within 17% range of the measurements. Using this tool, solar UV exposure patterns were investigated with respect to the relative contribution of the direct, diffuse and reflected radiation. Exposure doses for various body parts and exposure scenarios of a standing individual were assessed using erythemally-weighted UV ground irradiance data measured in 2009 at Payerne, Switzerland as input. For most anatomical sites, mean daily doses were high (typically 6.2-14.6 Standard Erythemal Dose, SED) and exceeded recommended exposure values. Direct exposure was important during specific periods (e. g. midday during summer), but contributed moderately to the annual dose, ranging from 15 to 24% for vertical and horizontal body parts, respectively. Diffuse irradiation explained about 80% of the cumulative annual exposure dose.
Resumo:
Background: Excessive exposure to solar Ultra-Violet (UV) light is the main cause of most skin cancers in humans. Factors such as the increase of solar irradiation at ground level (anthropic pollution), the rise in standard of living (vacation in sunny areas), and (mostly) the development of outdoor activities have contributed to increase exposure. Thus, unsurprisingly, incidence of skin cancers has increased over the last decades more than that of any other cancer. Melanoma is the most lethal cutaneous cancer, while cutaneous carcinomas are the most common cancer type worldwide. UV exposure depends on environmental as well as individual factors related to activity. The influence of individual factors on exposure among building workers was investigated in a previous study. Posture and orientation were found to account for at least 38% of the total variance of relative individual exposure. A high variance of short-term exposure was observed between different body locations, indicating the occurrence of intense, subacute exposures. It was also found that effective short-term exposure ranged between 0 and 200% of ambient irradiation, suggesting that ambient irradiation is a poor predictor of effective exposure. Various dosimetric techniques enable to assess individual effective exposure, but dosimetric measurements remain tedious and tend to be situation-specific. As a matter of facts, individual factors (exposure time, body posture and orientation in the sun) often limit the extrapolation of exposure results to similar activities conducted in other conditions. Objective: The research presented in this paper aims at developing and validating a predictive tool of effective individual exposure to solar UV. Methods: Existing computer graphic techniques (3D rendering) were adapted to reflect solar exposure conditions and calculate short-term anatomical doses. A numerical model, represented as a 3D triangular mesh, is used to represent the exposed body. The amount of solar energy received by each "triangle is calculated, taking into account irradiation intensity, incidence angle and possible shadowing from other body parts. The model take into account the three components of the solar irradiation (direct, diffuse and albedo) as well as the orientation and posture of the body. Field measurements were carried out using a forensic mannequin at the Payerne MeteoSwiss station. Short-term dosimetric measurements were performed in 7 anatomical locations for 5 body postures. Field results were compared to the model prediction obtained from the numerical model. Results: The best match between prediction and measurements was obtained for upper body parts such as shoulders (Ratio Modelled/Measured; Mean = 1.21, SD = 0.34) and neck (Mean = 0.81, SD = 0.32). Small curved body parts such as forehead (Mean = 6.48, SD = 9.61) exhibited a lower matching. The prediction is less accurate for complex postures such as kneeling (Mean = 4.13, SD = 8.38) compared to standing up (Mean = 0.85, SD = 0.48). The values obtained from the dosimeters and the ones computed from the model are globally consistent. Conclusion: Although further development and validation are required, these results suggest that effective exposure could be predicted for a given activity (work or leisure) in various ambient irradiation conditions. Using a generic modelling approach is of high interest in terms of implementation costs as well as predictive and retrospective capabilities.