76 resultados para turbulence modelling theory

em Université de Lausanne, Switzerland


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Summary.  Hepatitis C viral (HCV) kinetics after initiation of interferon-based therapy provide valuable insights for understanding virus pathogenesis, evaluating treatment antiviral effectiveness and predicting treatment outcome. Adverse effects of liver fibrosis and steatosis on sustained virological response have been frequently reported, yet their impacts on the early viral kinetics remain unclear. In this study, associations between histology status and early viral kinetics were assessed in 149 HCV genotype 1-infected patients treated with pegylated interferon alfa-2a and ribavirin (DITTO trial). In multivariate analyses adjusted for critical factors such as IL28B genotype and baseline viral load, presence of significant fibrosis (Ishak stage > 2) was found to independently reduce the odds of achieving an initial reduction (calculated from day 0 to day 4) in HCV RNA of ≥2 logIU/mL (adjusted OR 0.03, P = 0.004) but was not associated with the second-phase slope of viral decline (calculated from day 8 to day 29). On the contrary, presence of liver steatosis was an independent risk factor for not having a rapid second-phase slope, that is, ≥0.3 logIU/mL/week (adjusted OR 0.22, P = 0.012) but was not associated with the first-phase decline. Viral kinetic modelling theory suggests that significant fibrosis primarily impairs the treatment antiviral effectiveness in blocking viral production by infected cells, whereas the presence of steatosis is associated with a lower net loss of infected cells. Further studies will be necessary to identify the biological mechanisms underlain by these findings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Résumé: L'évaluation de l'exposition aux nuisances professionnelles représente une étape importante dans l'analyse de poste de travail. Les mesures directes sont rarement utilisées sur les lieux même du travail et l'exposition est souvent estimée sur base de jugements d'experts. Il y a donc un besoin important de développer des outils simples et transparents, qui puissent aider les spécialistes en hygiène industrielle dans leur prise de décision quant aux niveaux d'exposition. L'objectif de cette recherche est de développer et d'améliorer les outils de modélisation destinés à prévoir l'exposition. Dans un premier temps, une enquête a été entreprise en Suisse parmi les hygiénistes du travail afin d'identifier les besoins (types des résultats, de modèles et de paramètres observables potentiels). Il a été constaté que les modèles d'exposition ne sont guère employés dans la pratique en Suisse, l'exposition étant principalement estimée sur la base de l'expérience de l'expert. De plus, l'émissions de polluants ainsi que leur dispersion autour de la source ont été considérés comme des paramètres fondamentaux. Pour tester la flexibilité et la précision des modèles d'exposition classiques, des expériences de modélisations ont été effectuées dans des situations concrètes. En particulier, des modèles prédictifs ont été utilisés pour évaluer l'exposition professionnelle au monoxyde de carbone et la comparer aux niveaux d'exposition répertoriés dans la littérature pour des situations similaires. De même, l'exposition aux sprays imperméabilisants a été appréciée dans le contexte d'une étude épidémiologique sur une cohorte suisse. Dans ce cas, certains expériences ont été entreprises pour caractériser le taux de d'émission des sprays imperméabilisants. Ensuite un modèle classique à deux-zone a été employé pour évaluer la dispersion d'aérosol dans le champ proche et lointain pendant l'activité de sprayage. D'autres expériences ont également été effectuées pour acquérir une meilleure compréhension des processus d'émission et de dispersion d'un traceur, en se concentrant sur la caractérisation de l'exposition du champ proche. Un design expérimental a été développé pour effectuer des mesures simultanées dans plusieurs points d'une cabine d'exposition, par des instruments à lecture directe. Il a été constaté que d'un point de vue statistique, la théorie basée sur les compartiments est sensée, bien que l'attribution à un compartiment donné ne pourrait pas se faire sur la base des simples considérations géométriques. Dans une étape suivante, des données expérimentales ont été collectées sur la base des observations faites dans environ 100 lieux de travail différents: des informations sur les déterminants observés ont été associées aux mesures d'exposition des informations sur les déterminants observés ont été associé. Ces différentes données ont été employées pour améliorer le modèle d'exposition à deux zones. Un outil a donc été développé pour inclure des déterminants spécifiques dans le choix du compartiment, renforçant ainsi la fiabilité des prévisions. Toutes ces investigations ont servi à améliorer notre compréhension des outils des modélisations ainsi que leurs limitations. L'intégration de déterminants mieux adaptés aux besoins des experts devrait les inciter à employer cet outil dans leur pratique. D'ailleurs, en augmentant la qualité des outils des modélisations, cette recherche permettra non seulement d'encourager leur utilisation systématique, mais elle pourra également améliorer l'évaluation de l'exposition basée sur les jugements d'experts et, par conséquent, la protection de la santé des travailleurs. Abstract Occupational exposure assessment is an important stage in the management of chemical exposures. Few direct measurements are carried out in workplaces, and exposures are often estimated based on expert judgements. There is therefore a major requirement for simple transparent tools to help occupational health specialists to define exposure levels. The aim of the present research is to develop and improve modelling tools in order to predict exposure levels. In a first step a survey was made among professionals to define their expectations about modelling tools (what types of results, models and potential observable parameters). It was found that models are rarely used in Switzerland and that exposures are mainly estimated from past experiences of the expert. Moreover chemical emissions and their dispersion near the source have also been considered as key parameters. Experimental and modelling studies were also performed in some specific cases in order to test the flexibility and drawbacks of existing tools. In particular, models were applied to assess professional exposure to CO for different situations and compared with the exposure levels found in the literature for similar situations. Further, exposure to waterproofing sprays was studied as part of an epidemiological study on a Swiss cohort. In this case, some laboratory investigation have been undertaken to characterize the waterproofing overspray emission rate. A classical two-zone model was used to assess the aerosol dispersion in the near and far field during spraying. Experiments were also carried out to better understand the processes of emission and dispersion for tracer compounds, focusing on the characterization of near field exposure. An experimental set-up has been developed to perform simultaneous measurements through direct reading instruments in several points. It was mainly found that from a statistical point of view, the compartmental theory makes sense but the attribution to a given compartment could ñó~be done by simple geometric consideration. In a further step the experimental data were completed by observations made in about 100 different workplaces, including exposure measurements and observation of predefined determinants. The various data obtained have been used to improve an existing twocompartment exposure model. A tool was developed to include specific determinants in the choice of the compartment, thus largely improving the reliability of the predictions. All these investigations helped improving our understanding of modelling tools and identify their limitations. The integration of more accessible determinants, which are in accordance with experts needs, may indeed enhance model application for field practice. Moreover, while increasing the quality of modelling tool, this research will not only encourage their systematic use, but might also improve the conditions in which the expert judgments take place, and therefore the workers `health protection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present and apply a new three-dimensional model for the prediction of canopy-flow and turbulence dynamics in open-channel flow. The approach uses a dynamic immersed boundary technique that is coupled in a sequentially staggered manner to a large eddy simulation. Two different biomechanical models are developed depending on whether the vegetation is dominated by bending or tensile forces. For bending plants, a model structured on the Euler-Bernoulli beam equation has been developed, whilst for tensile plants, an N-pendula model has been developed. Validation against flume data shows good agreement and demonstrates that for a given stem density, the models are able to simulate the extraction of energy from the mean flow at the stem-scale which leads to the drag discontinuity and associated mixing layer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research considers the problem of spatial data classification using machine learning algorithms: probabilistic neural networks (PNN) and support vector machines (SVM). As a benchmark model simple k-nearest neighbor algorithm is considered. PNN is a neural network reformulation of well known nonparametric principles of probability density modeling using kernel density estimator and Bayesian optimal or maximum a posteriori decision rules. PNN is well suited to problems where not only predictions but also quantification of accuracy and integration of prior information are necessary. An important property of PNN is that they can be easily used in decision support systems dealing with problems of automatic classification. Support vector machine is an implementation of the principles of statistical learning theory for the classification tasks. Recently they were successfully applied for different environmental topics: classification of soil types and hydro-geological units, optimization of monitoring networks, susceptibility mapping of natural hazards. In the present paper both simulated and real data case studies (low and high dimensional) are considered. The main attention is paid to the detection and learning of spatial patterns by the algorithms applied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The proportion of population living in or around cites is more important than ever. Urban sprawl and car dependence have taken over the pedestrian-friendly compact city. Environmental problems like air pollution, land waste or noise, and health problems are the result of this still continuing process. The urban planners have to find solutions to these complex problems, and at the same time insure the economic performance of the city and its surroundings. At the same time, an increasing quantity of socio-economic and environmental data is acquired. In order to get a better understanding of the processes and phenomena taking place in the complex urban environment, these data should be analysed. Numerous methods for modelling and simulating such a system exist and are still under development and can be exploited by the urban geographers for improving our understanding of the urban metabolism. Modern and innovative visualisation techniques help in communicating the results of such models and simulations. This thesis covers several methods for analysis, modelling, simulation and visualisation of problems related to urban geography. The analysis of high dimensional socio-economic data using artificial neural network techniques, especially self-organising maps, is showed using two examples at different scales. The problem of spatiotemporal modelling and data representation is treated and some possible solutions are shown. The simulation of urban dynamics and more specifically the traffic due to commuting to work is illustrated using multi-agent micro-simulation techniques. A section on visualisation methods presents cartograms for transforming the geographic space into a feature space, and the distance circle map, a centre-based map representation particularly useful for urban agglomerations. Some issues on the importance of scale in urban analysis and clustering of urban phenomena are exposed. A new approach on how to define urban areas at different scales is developed, and the link with percolation theory established. Fractal statistics, especially the lacunarity measure, and scale laws are used for characterising urban clusters. In a last section, the population evolution is modelled using a model close to the well-established gravity model. The work covers quite a wide range of methods useful in urban geography. Methods should still be developed further and at the same time find their way into the daily work and decision process of urban planners. La part de personnes vivant dans une région urbaine est plus élevé que jamais et continue à croître. L'étalement urbain et la dépendance automobile ont supplanté la ville compacte adaptée aux piétons. La pollution de l'air, le gaspillage du sol, le bruit, et des problèmes de santé pour les habitants en sont la conséquence. Les urbanistes doivent trouver, ensemble avec toute la société, des solutions à ces problèmes complexes. En même temps, il faut assurer la performance économique de la ville et de sa région. Actuellement, une quantité grandissante de données socio-économiques et environnementales est récoltée. Pour mieux comprendre les processus et phénomènes du système complexe "ville", ces données doivent être traitées et analysées. Des nombreuses méthodes pour modéliser et simuler un tel système existent et sont continuellement en développement. Elles peuvent être exploitées par le géographe urbain pour améliorer sa connaissance du métabolisme urbain. Des techniques modernes et innovatrices de visualisation aident dans la communication des résultats de tels modèles et simulations. Cette thèse décrit plusieurs méthodes permettant d'analyser, de modéliser, de simuler et de visualiser des phénomènes urbains. L'analyse de données socio-économiques à très haute dimension à l'aide de réseaux de neurones artificiels, notamment des cartes auto-organisatrices, est montré à travers deux exemples aux échelles différentes. Le problème de modélisation spatio-temporelle et de représentation des données est discuté et quelques ébauches de solutions esquissées. La simulation de la dynamique urbaine, et plus spécifiquement du trafic automobile engendré par les pendulaires est illustrée à l'aide d'une simulation multi-agents. Une section sur les méthodes de visualisation montre des cartes en anamorphoses permettant de transformer l'espace géographique en espace fonctionnel. Un autre type de carte, les cartes circulaires, est présenté. Ce type de carte est particulièrement utile pour les agglomérations urbaines. Quelques questions liées à l'importance de l'échelle dans l'analyse urbaine sont également discutées. Une nouvelle approche pour définir des clusters urbains à des échelles différentes est développée, et le lien avec la théorie de la percolation est établi. Des statistiques fractales, notamment la lacunarité, sont utilisées pour caractériser ces clusters urbains. L'évolution de la population est modélisée à l'aide d'un modèle proche du modèle gravitaire bien connu. Le travail couvre une large panoplie de méthodes utiles en géographie urbaine. Toutefois, il est toujours nécessaire de développer plus loin ces méthodes et en même temps, elles doivent trouver leur chemin dans la vie quotidienne des urbanistes et planificateurs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sustainable resource use is one of the most important environmental issues of our times. It is closely related to discussions on the 'peaking' of various natural resources serving as energy sources, agricultural nutrients, or metals indispensable in high-technology applications. Although the peaking theory remains controversial, it is commonly recognized that a more sustainable use of resources would alleviate negative environmental impacts related to resource use. In this thesis, sustainable resource use is analysed from a practical standpoint, through several different case studies. Four of these case studies relate to resource metabolism in the Canton of Geneva in Switzerland: the aim was to model the evolution of chosen resource stocks and flows in the coming decades. The studied resources were copper (a bulk metal), phosphorus (a vital agricultural nutrient), and wood (a renewable resource). In addition, the case of lithium (a critical metal) was analysed briefly in a qualitative manner and in an electric mobility perspective. In addition to the Geneva case studies, this thesis includes a case study on the sustainability of space life support systems. Space life support systems are systems whose aim is to provide the crew of a spacecraft with the necessary metabolic consumables over the course of a mission. Sustainability was again analysed from a resource use perspective. In this case study, the functioning of two different types of life support systems, ARES and BIORAT, were evaluated and compared; these systems represent, respectively, physico-chemical and biological life support systems. Space life support systems could in fact be used as a kind of 'laboratory of sustainability' given that they represent closed and relatively simple systems compared to complex and open terrestrial systems such as the Canton of Geneva. The chosen analysis method used in the Geneva case studies was dynamic material flow analysis: dynamic material flow models were constructed for the resources copper, phosphorus, and wood. Besides a baseline scenario, various alternative scenarios (notably involving increased recycling) were also examined. In the case of space life support systems, the methodology of material flow analysis was also employed, but as the data available on the dynamic behaviour of the systems was insufficient, only static simulations could be performed. The results of the case studies in the Canton of Geneva show the following: were resource use to follow population growth, resource consumption would be multiplied by nearly 1.2 by 2030 and by 1.5 by 2080. A complete transition to electric mobility would be expected to only slightly (+5%) increase the copper consumption per capita while the lithium demand in cars would increase 350 fold. For example, phosphorus imports could be decreased by recycling sewage sludge or human urine; however, the health and environmental impacts of these options have yet to be studied. Increasing the wood production in the Canton would not significantly decrease the dependence on wood imports as the Canton's production represents only 5% of total consumption. In the comparison of space life support systems ARES and BIORAT, BIORAT outperforms ARES in resource use but not in energy use. However, as the systems are dimensioned very differently, it remains questionable whether they can be compared outright. In conclusion, the use of dynamic material flow analysis can provide useful information for policy makers and strategic decision-making; however, uncertainty in reference data greatly influences the precision of the results. Space life support systems constitute an extreme case of resource-using systems; nevertheless, it is not clear how their example could be of immediate use to terrestrial systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The algorithmic approach to data modelling has developed rapidly these last years, in particular methods based on data mining and machine learning have been used in a growing number of applications. These methods follow a data-driven methodology, aiming at providing the best possible generalization and predictive abilities instead of concentrating on the properties of the data model. One of the most successful groups of such methods is known as Support Vector algorithms. Following the fruitful developments in applying Support Vector algorithms to spatial data, this paper introduces a new extension of the traditional support vector regression (SVR) algorithm. This extension allows for the simultaneous modelling of environmental data at several spatial scales. The joint influence of environmental processes presenting different patterns at different scales is here learned automatically from data, providing the optimum mixture of short and large-scale models. The method is adaptive to the spatial scale of the data. With this advantage, it can provide efficient means to model local anomalies that may typically arise in situations at an early phase of an environmental emergency. However, the proposed approach still requires some prior knowledge on the possible existence of such short-scale patterns. This is a possible limitation of the method for its implementation in early warning systems. The purpose of this paper is to present the multi-scale SVR model and to illustrate its use with an application to the mapping of Cs137 activity given the measurements taken in the region of Briansk following the Chernobyl accident.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Statistical modelling is often used to relate sparse biological survey data to remotely derived environmental predictors, thereby providing a basis for predictively mapping biodiversity across an entire region of interest. The most popular strategy for such modelling has been to model distributions of individual species one at a time. Spatial modelling of biodiversity at the community level may, however, confer significant benefits for applications involving very large numbers of species, particularly if many of these species are recorded infrequently. 2. Community-level modelling combines data from multiple species and produces information on spatial pattern in the distribution of biodiversity at a collective community level instead of, or in addition to, the level of individual species. Spatial outputs from community-level modelling include predictive mapping of community types (groups of locations with similar species composition), species groups (groups of species with similar distributions), axes or gradients of compositional variation, levels of compositional dissimilarity between pairs of locations, and various macro-ecological properties (e.g. species richness). 3. Three broad modelling strategies can be used to generate these outputs: (i) 'assemble first, predict later', in which biological survey data are first classified, ordinated or aggregated to produce community-level entities or attributes that are then modelled in relation to environmental predictors; (ii) 'predict first, assemble later', in which individual species are modelled one at a time as a function of environmental variables, to produce a stack of species distribution maps that is then subjected to classification, ordination or aggregation; and (iii) 'assemble and predict together', in which all species are modelled simultaneously, within a single integrated modelling process. These strategies each have particular strengths and weaknesses, depending on the intended purpose of modelling and the type, quality and quantity of data involved. 4. Synthesis and applications. The potential benefits of modelling large multispecies data sets using community-level, as opposed to species-level, approaches include faster processing, increased power to detect shared patterns of environmental response across rarely recorded species, and enhanced capacity to synthesize complex data into a form more readily interpretable by scientists and decision-makers. Community-level modelling therefore deserves to be considered more often, and more widely, as a potential alternative or supplement to modelling individual species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of land cover change as a significant component of global change has become increasingly recognized in recent decades. Large databases measuring land cover change, and the data which can potentially be used to explain the observed changes, are also becoming more commonly available. When developing statistical models to investigate observed changes, it is important to be aware that the chosen sampling strategy and modelling techniques can influence results. We present a comparison of three sampling strategies and two forms of grouped logistic regression models (multinomial and ordinal) in the investigation of patterns of successional change after agricultural land abandonment in Switzerland. Results indicated that both ordinal and nominal transitional change occurs in the landscape and that the use of different sampling regimes and modelling techniques as investigative tools yield different results. Synthesis and applications. Our multimodel inference identified successfully a set of consistently selected indicators of land cover change, which can be used to predict further change, including annual average temperature, the number of already overgrown neighbouring areas of land and distance to historically destructive avalanche sites. This allows for more reliable decision making and planning with respect to landscape management. Although both model approaches gave similar results, ordinal regression yielded more parsimonious models that identified the important predictors of land cover change more efficiently. Thus, this approach is favourable where land cover change pattern can be interpreted as an ordinal process. Otherwise, multinomial logistic regression is a viable alternative.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computer simulations on a new model of the alpha1b-adrenergic receptor based on the crystal structure of rhodopsin have been combined with experimental mutagenesis to investigate the role of residues in the cytosolic half of helix 6 in receptor activation. Our results support the hypothesis that a salt bridge between the highly conserved arginine (R143(3.50)) of the E/DRY motif of helix 3 and a conserved glutamate (E289(6.30)) on helix 6 constrains the alpha1b-AR in the inactive state. In fact, mutations of E289(6.30) that weakened the R143(3.50)-E289(6.30) interaction constitutively activated the receptor. The functional effect of mutating other amino acids on helix 6 (F286(6.27), A292(6.33), L296(6.37), V299(6.40,) V300(6.41), and F303(6.44)) correlates with the extent of their interaction with helix 3 and in particular with R143(3.50) of the E/DRY sequence.