8 resultados para tropical forest succession

em Université de Lausanne, Switzerland


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Time-expanded echolocation calls were recorded from 29 species of Neotropical bats in lowland moist tropical forest in Trinidad, West Indies with three aims (I) to describe the echolocation calls of the members of a diverse Neotropical bat community, especially members of the family Phyllostomidae, whose calls are not well documented (2) to investigate whether multivariate analysis of calls allows species and foraging guilds to be identified and (3) to evaluate the use of bat detectors in surveying the phyllostomids of Neotropical forests. The calls of 12 species of the family Phyllostomidae are described here for the first time and a total of 29 species, belonging to five families (Emballonuridae, Mormoopidae, Phyllostomidae, Molossidae and Vespertilionidae) were recorded Quadratic discriminant function analysis (DFA) was used to obtain classification rates for each one of 11 individual species and for six guilds (based on diet, foraging mode and habitat) comprising 26 species Overall classification rates were low compared to similar studies conducted in the Palaeotropics We suggest that this may be due to a combination of ecological plasticity for certain species and a loose relationship between echolocation call shape, fine-grained resource partitioning and resource acquisition in phyllostomids

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The oxalate-carbonate pathway (OCP) is a biogeochemical process, which has been described in Milicia excelsa tree ecosystems of Africa. This pathway involves biological and geological parameters at different scales: oxalate, as a by-product of photosynthesis, is oxidized by oxalotrophic bacteria leading to a local pH increase, and eventually to carbonate accumulation through time in previously acidic and carbonate-free tropical soils. Former studies have shown that this pedogenic process can potentially lead to the formation of an atmospheric carbon sink. Considering that 80% of plant species are known to produce oxalate, it is reasonable to assume that M. excelsa is not the only tree that can support OCP ecosystems. The search for similar conditions on another continent led us to South America, in an Amazon forest ecosystem (Alto Beni, Bolivia). This area was chosen because of the absence of local inherited carbonate in the bedrock, as well as its expected acidic soil conditions. Eleven tree species and associated soils were tested positive for the presence of carbonate with a more alkaline soil pH close to the tree than at a distance from it. A detailed study of Pentaplaris davidsmithii and Ceiba speciosa trees showed that oxalotrophy impacted soil pH in a similar way to at African sites (at least with 1 pH unit increasing). African and South American sites display similar characteristics regarding the mineralogical assemblage associated with the OCP, except for the absence of weddellite. The amount of carbonate accumulated is 3 to 4 times lower than the values measured in African sites related to M. excelsa ecosystems. Still, these secondary carbonates remain critical for the continental carbon cycle, as they are unexpected in the acidic context of Amazonian soils. Therefore, the present study demonstrates the existence of an active OCP in South America. The three critical components of an operating OCP are the presence of: i) local alkalinization, ii) carbonate accumulations, and iii) oxalotrophic bacteria, which were identified associated to the oxalogenic tree C. speciosa. If the question of a potential carbon sink related to oxalotrophic-oxalogenic ecosystems in the Amazon Basin is still pending, this study highlights the implication of OCP ecosystems on carbon and calcium biogeochemical coupled cycles. As previously mentioned for M. excelsa tree ecosystems in Africa, carbonate accumulations observed in the Bolivian tropical forest could be extrapolated to part or the whole Amazon Basin and might constitute an important reservoir that must be taken into account in the global carbon balance of the Tropics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Determining the relative roles of vicariance and selection in restricting gene flow between populations is of central importance to the evolutionary process of population divergence and speciation. Here we use molecular and morphological data to contrast the effect of isolation (by mountains and geographical distance) with that of ecological factors (altitudinal gradients) in promoting differentiation in the wedge-billed woodcreeper, Glyphorynchus spirurus, a tropical forest bird, in Ecuador. Tarsus length and beak size increased relative to body size with altitude on both sides of the Andes, and were correlated with the amount of moss on tree trunks, suggesting the role of selection in driving adaptive divergence. In contrast, molecular data revealed a considerable degree of admixture along these altitudinal gradients, suggesting that adaptive divergence in morphological traits has occurred in the presence of gene flow. As suggested by mitochondrial DNA sequence data, the Andes act as a barrier to gene flow between ancient subspecific lineages. Genome-wide amplified fragment length polymorphism markers reflected more recent patterns of gene flow and revealed fine-scale patterns of population differentiation that were not detectable with mitochondrial DNA, including the differentiation of isolated coastal populations west of the Andes. Our results support the predominant role of geographical isolation in driving genetic differentiation in G. spirurus, yet suggest the role of selection in driving parallel morphological divergence along ecological gradients.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The thermal energetics of rodents from cool, wet tropical highlands are poorly known. Metabolic rate, body temperature and thermal conductance were measured in the moss-forest rat, Rattus niobe (Rodentia), a small murid endemic to the highlands of New Guinea. These data were evaluated in the context of the variation observed in the genus Rattus and among tropical murids. In 7 adult R. niobe, basal metabolic rate (BMR) averaged 53.6±6.6mLO2h(-1), or 103% of the value predicted for a body mass of 42.3±5.8g. Compared to other species of Rattus, R. niobe combines a low body temperature (35.5±0.6°C) and a moderately low minimal wet thermal conductance cmin (5.88±0.7mLO2h(-1)°C(-1), 95% of predicted) with a small size, all of which lead to reduced energy expenditure in a constantly cool environment. The correlations of mean annual rainfall and temperature, altitude and body mass with BMR, body temperature and cmin were analyzed comparatively among tropical Muridae. Neither BMR, nor cmin or body temperature correlated with ambient temperature or altitude. Some of the factors which promote high BMR in higher latitude habitats, such as seasonal exposure to very low temperature and short reproductive season, are lacking in wet montane tropical forests. BMR increased with rainfall, confirming a pattern observed among other assemblages of mammals. This correlation was due to the low BMR of several desert adapted murids, while R. niobe and other species from wet habitats had a moderate BMR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An African oxalogenic tree, the iroko tree (Milicia excelsa), has the property to enhance carbonate precipitation in tropical oxisols, where such accumulations are not expected due to the acidic conditions in these types of soils. This uncommon process is linked to the oxalate-carbonate pathway, which increases soil pH through oxalate oxidation. In order to investigate the oxalate-carbonate pathway in the iroko system, fluxes of matter have been identified, described, and evaluated from field to microscopic scales. In the first centimeters of the soil profile, decaying of the organic matter allows the release of whewellite crystals, mainly due to the action of termites and saprophytic fungi. In addition, a concomitant flux of carbonate formed in wood tissues contributes to the carbonate flux and is identified as a direct consequence of wood feeding by termites. Nevertheless, calcite biomineralization of the tree is not a consequence of in situ oxalate consumption, but rather related to the oxalate oxidation inside the upper part of the soil. The consequence of this oxidation is the presence of carbonate ions in the soil solution pumped through the roots, leading to preferential mineralization of the roots and the trunk base. An ideal scenario for the iroko biomineralization and soil carbonate accumulation starts with oxalatization: as the iroko tree grows, the organic matter flux to the soil constitutes the litter, and an oxalate pool is formed on the forest ground. Then, wood rotting agents (mainly termites, saprophytic fungi, and bacteria) release significant amounts of oxalate crystals from decaying plant tissues. In addition, some of these agents are themselves producers of oxalate (e.g. fungi). Both processes contribute to a soil pool of "available" oxalate crystals. Oxalate consumption by oxalotrophic bacteria can then start. Carbonate and calcium ions present in the soil solution represent the end products of the oxalate-carbonate pathway. The solution is pumped through the roots, leading to carbonate precipitation. The main pools of carbon are clearly identified as the organic matter (the tree and its organic products), the oxalate crystals, and the various carbonate features. A functional model based on field observations and diagenetic investigations with δ13C signatures of the various compartments involved in the local carbon cycle is proposed. It suggests that the iroko ecosystem can act as a long-term carbon sink, as long as the calcium source is related to non-carbonate rocks. Consequently, this carbon sink, driven by the oxalate carbonate pathway around an iroko tree, constitutes a true carbon trapping ecosystem as defined by ecological theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. As trees in a given cohort progress through ontogeny, many individuals die. This risk of mortality is unevenly distributed across species because of many processes such as habitat filtering, interspecific competition and negative density dependence. Here, we predict and test the patterns that such ecological processes should inscribe on both species and phylogenetic diversity as plants recruit from saplings to the canopy. 2. We compared species and phylogenetic diversity of sapling and tree communities at two sites in French Guiana. We surveyed 2084 adult trees in four 1-ha tree plots and 943 saplings in sixteen 16-m2 subplots nested within the tree plots. Species diversity was measured using Fisher's alpha (species richness) and Simpson's index (species evenness). Phylogenetic diversity was measured using Faith's phylogenetic diversity (phylogenetic richness) and Rao's quadratic entropy index (phylogenetic evenness). The phylogenetic diversity indices were inferred using four phylogenetic hypotheses: two based on rbcLa plastid DNA sequences obtained from the inventoried individuals with different branch lengths, a global phylogeny available from the Angiosperm Phylogeny Group, and a combination of both. 3. Taxonomic identification of the saplings was performed by combining morphological and DNA barcoding techniques using three plant DNA barcodes (psbA-trnH, rpoC1 and rbcLa). DNA barcoding enabled us to increase species assignment and to assign unidentified saplings to molecular operational taxonomic units. 4. Species richness was similar between saplings and trees, but in about half of our comparisons, species evenness was higher in trees than in saplings. This suggests that negative density dependence plays an important role during the sapling-to-tree transition. 5. Phylogenetic richness increased between saplings and trees in about half of the comparisons. Phylogenetic evenness increased significantly between saplings and trees in a few cases (4 out of 16) and only with the most resolved phylogeny. These results suggest that negative density dependence operates largely independently of the phylogenetic structure of communities. 6. Synthesis. By contrasting species richness and evenness across size classes, we suggest that negative density dependence drives shifts in composition during the sapling-to-tree transition. In addition, we found little evidence for a change in phylogenetic diversity across age classes, suggesting that the observed patterns are not phylogenetically constrained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper discusses the relationship between the differentiation of ferruginous accumulations and the variable water saturation of footslope soil patterns. An analysis of the slope morphology of a typical hill in the forest zone of southern Cameroon and a seasonal survey of the levels of groundwaters, springs and rivers were considered in relation to the petrology of different soil patterns. The study site is a tabular hillock whose slopes present a progressive development from steep to gentle slopes. The variable residence time of water within the soil, creating an alternation of reducing and oxidizing conditions, affects oil chemistry, structure and lateral extension of the soil patterns. The ferruginous soil patterns, being formed on the footslopes, gradually increase in extent with decreasing slope angle and the relative rise of the groundwater level. The steep footslopes, where groundwater has a shorter residence time, show a soft mottled clay pattern, restricted to the bottom part of the slope. The moderate footslopes exhibit a deep permanent and a temporary perched groundwater table. The latter, with its regular capillary fringe, contributes to more reducing conditions within isolated domains in the soil patterns, and thus to the alternation with oxidizing conditions, generating a continuous hard soil pattern (massive carapace). The more gently dipping footslopes exhibit groundwater levels near the surface and also a significant amplitude of groundwater fluctuation. Iron, previously accumulated in moderate footslope patterns, is reduced, remobilized, and leached. The soil patterns formed develop into a variegated carapace, more extended along the slope, containing less iron, but nevertheless more hardened, due to the important fluctuations of the groundwater table. These patterns are limited to the zone of groundwater fluctuation and deteriorate as the water fluctuation zone recedes. Copyright (c) 2005 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Determining the biogeographical histories of rainforests is central to our understanding of the present distribution of tropical biodiversity. Ice age fragmentation of central African rainforests strongly influenced species distributions. Elevated areas characterized by higher species richness and endemism have been postulated to be Pleistocene forest refugia. However, it is often difficult to separate the effects of history and of present-day ecological conditions on diversity patterns at the interspecific level. Intraspecific genetic variation could yield new insights into history, because refugia hypotheses predict patterns not expected on the basis of contemporary environmental dynamics. Here, we test geographically explicit hypotheses of vicariance associated with the presence of putative refugia and provide clues about their location. We intensively sampled populations of Aucoumea klaineana, a forest tree sensitive to forest fragmentation, throughout its geographical range. Characterizing variation at 10 nuclear microsatellite loci, we were able to obtain phylogeographic data of unprecedented detail for this region. Using Bayesian clustering approaches, we demonstrated the presence of four differentiated genetic units. Their distribution matched that of forest refugia postulated from patterns of species richness and endemism. Our data also show differences in diversity dynamics at leading and trailing edges of the species' shifting distribution. Our results confirm predictions based on refugia hypotheses and cannot be explained on the basis of present-day ecological conditions.