88 resultados para tribbles homologue
em Université de Lausanne, Switzerland
Resumo:
We have previously reported on the death effector domain containing E8 gene product from equine herpesvirus-2, designated FLICE inhibitory protein (v-FLIP), and on its cellular homologue, c-FLIP, which inhibit the activation of caspase-8 by death receptors. Here we report on the structure and function of the E10 gene product of equine herpesvirus-2, designated v-CARMEN, and on its cellular homologue, c-CARMEN, which contain a caspase-recruiting domain (CARD) motif. c-CARMEN is highly homologous to the viral protein in its N-terminal CARD motif but differs in its C-terminal extension. v-CARMEN and c-CARMEN interact directly in a CARD-dependent manner yet reveal different binding specificities toward members of the tumor necrosis factor receptor-associated factor (TRAF) family. v-CARMEN binds to TRAF6 and weakly to TRAF3 and, upon overexpression, potently induces the c-Jun N-terminal kinase (JNK), p38, and nuclear factor (NF)-kappaB transcriptional pathways. c-CARMEN or truncated versions thereof do not appear to induce JNK and NF-kappaB activation by themselves, nor do they affect the JNK and NF-kappaB activating potential of v-CARMEN. Thus, in contrast to the cellular homologue, v-CARMEN may have additional properties in its unique C terminus that allow for an autonomous activator effect on NF-kappaB and JNK. Through activation of NF-kappaB, v-CARMEN may regulate the expression of the cellular and viral genes important for viral replication.
Resumo:
Narcolepsy is a sleep disorder characterized by excessive daytime sleepiness and attacks of muscle atonia triggered by strong emotions (cataplexy). Narcolepsy is caused by hypocretin (orexin) deficiency, paralleled by a dramatic loss in hypothalamic hypocretin-producing neurons. It is believed that narcolepsy is an autoimmune disorder, although definitive proof of this, such as the presence of autoantibodies, is still lacking. We engineered a transgenic mouse model to identify peptides enriched within hypocretin-producing neurons that could serve as potential autoimmune targets. Initial analysis indicated that the transcript encoding Tribbles homolog 2 (Trib2), previously identified as an autoantigen in autoimmune uveitis, was enriched in hypocretin neurons in these mice. ELISA analysis showed that sera from narcolepsy patients with cataplexy had higher Trib2-specific antibody titers compared with either normal controls or patients with idiopathic hypersomnia, multiple sclerosis, or other inflammatory neurological disorders. Trib2-specific antibody titers were highest early after narcolepsy onset, sharply decreased within 2-3 years, and then stabilized at levels substantially higher than that of controls for up to 30 years. High Trib2-specific antibody titers correlated with the severity of cataplexy. Serum of a patient showed specific immunoreactivity with over 86% of hypocretin neurons in the mouse hypothalamus. Thus, we have identified reactive autoantibodies in human narcolepsy, providing evidence that narcolepsy is an autoimmune disorder.
Resumo:
v-E10, a caspase recruitment domain (CARD)-containing gene product of equine herpesvirus 2, is the viral homologue of the bcl-10 protein whose gene was found to be translocated in mucosa-associated lymphoid tissue (MALT) lymphomas. v-E10 efficiently activates the c-jun NH(2)-terminal kinase (JNK), p38 stress kinase, and the nuclear factor (NF)-kappaB transcriptional pathway and interacts with its cellular homologue, bcl-10, via a CARD-mediated interaction. Here we demonstrate that v-E10 contains a COOH-terminal geranylgeranylation consensus site which is responsible for its plasma membrane localization. Expression of v-E10 induces hyperphosphorylation and redistribution of bcl-10 from the cytoplasm to the plasma membrane, a process which is dependent on the intactness of the v-E10 CARD motif. Both membrane localization and a functional CARD motif are important for v-E10-mediated NF-kappaB induction, but not for JNK activation, which instead requires a functional v-E10 binding site for tumor necrosis factor receptor-associated factor (TRAF)6. Moreover, v-E10-induced NF-kappaB activation is inhibited by a dominant negative version of the bcl-10 binding protein TRAF1, suggesting that v-E10-induced membrane recruitment of cellular bcl-10 induces constitutive TRAF-mediated NF-kappaB activation.
Resumo:
Insect gustatory and odorant receptors (GRs and ORs) form a superfamily of novel transmembrane proteins, which are expressed in chemosensory neurons that detect environmental stimuli. Here we identify homologues of GRs (Gustatory receptor-like (Grl) genes) in genomes across Protostomia, Deuterostomia and non-Bilateria. Surprisingly, two Grls in the cnidarian Nematostella vectensis, NvecGrl1 and NvecGrl2, are expressed early in development, in the blastula and gastrula, but not at later stages when a putative chemosensory organ forms. NvecGrl1 transcripts are detected around the aboral pole, considered the equivalent to the head-forming region of Bilateria. Morpholino-mediated knockdown of NvecGrl1 causes developmental patterning defects of this region, leading to animals lacking the apical sensory organ. A deuterostome Grl from the sea urchin Strongylocentrotus purpuratus displays similar patterns of developmental expression. These results reveal an early evolutionary origin of the insect chemosensory receptor family and raise the possibility that their ancestral role was in embryonic development.
Resumo:
Islet-brain 1 (IB1) was recently identified as a DNA-binding protein of the GLUT2 gene promoter. The mouse IB1 is the rat and human homologue of the Jun-interacting protein 1 (JIP-1) which has been recognized as a key player in the regulation of c-Jun amino-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) pathways. JIP-1 is involved in the control of apoptosis and may play a role in brain development and aging. Here, IB1 was studied in adult and developing mouse brain tissue by in situ hybridization, Northern and Western blot analysis at cellular and subcellular levels, as well as by immunocytochemistry in brain sections and cell cultures. IB1 expression was localized in the synaptic regions of the olfactory bulb, retina, cerebral and cerebellar cortex and hippocampus in the adult mouse brain. IB1 was also detected in a restricted number of axons, as in the mossy fibres from dentate gyrus in the hippocampus, and was found in soma, dendrites and axons of cerebellar Purkinje cells. After birth, IB1 expression peaks at postnatal day 15. IB1 was located in axonal and dendritic growth cones in primary telencephalon cells. By biochemical and subcellular fractionation of neuronal cells, IB1 was detected both in the cytosolic and membrane fractions. Taken together with previous data, the restricted neuronal expression of IB1 in developing and adult brain and its prominent localization in synapses suggest that the protein may be critical for cell signalling in developing and mature nerve terminals.
Resumo:
Summary The CD4 molecule plays a key role in AIDS pathogenesis, it is required for entry of the virus into permissive cells and its subsequent down-modulation of the cell surface is a hallmark of HN-1 infected cells. The virus encodes no less than three proteins that participate in this process: Nef, Vpu and Env. Vpu protein interacts with CD4 within the endoplasmic reticulum of infected cells, where it targets CD4 for degradation through the interaction with a cellular protein named ß-TrCP1. This F-box protein functions as the substrate recognition subunit of the SCF ß-Trcr E3 ubiquitin ligase, which normally induce the ubiquitination and subsequent degradation of various proteins such as ß-catenin and IxBa. Mammals possess a homologue of ß-TrCP1, HOS, also named ß-TrCP2 which has a cytoplasmic subcellular distribution. Structural analysis of the ligand-binding domain of both homologues shows striking surface similarities. Both F-box proteins have a redundant role in a number of cellular processes; however the potential role of ß-TrCP2 in HIV-1 infected cells has not been evaluated. In the present study, we assessed the existence of génetic variants of BRTC, encoding ß-TrCP1, and evaluated whether these variants would affect CD4 down-modulation. Additionally, we determined whether ß-TrCP2 shares with its homologue structural and functional properties that would allow it to bind Vpu, modulate CD4 expression, and thus participate in HN-1 pathogenesis. We identified a single nucleotide polymorphism present in the human population with an allelic frequency of 0.03 that leads to the substitution of alanine 507 by a serine. However, we showed by transient transfection in HeLa CD4+ cells that this variant behaves as ß-TrCP1 with respect to CD4 down-modulation. We established transient expression systems in HeLa CD4+ cells to test whether ß-TrCP2 is implicated in Vpu-mediated CD4 down-modulation. We show by coimmunoprecipitation experiments that ß-TrCP2 binds Vpu and is able to induce CD4 down-modulation as efficiently as ß-TrCP1. In two different cell lines, HeLa CD4+ and Jurkat, Vpu-mediated CD4 down-modulation could not be completely reversed through the silencing of endogenous ß-TrCP 1 or ß-TrCP2 individually, but required both genes to be silenced simultaneously. We evaluated the role of ß-TrCP1 and ß-TrCP2 in HIV-1 life cycle using silencing prior to actual viral infection. Both ß-TrCP1 and ß-TrCP2 contributed to CD4 down-modulation during aone-cycle viral infection iri Ghost cells. In addition, the combined silencing of both homologues in the absence of env and nef reversed CD4 down-modulation, showing that ß-TrCP 1 and ß-TrCP2 represent the main and additive effectors of HIV-1 encoded Vpu. In addition, we showed that silencing of ß-TrCPI but not ß-TrCP2 induced a decrease of HIV-1 LTR-driven expression. In a transient transfection system with Tat and a LTR luciferase reporter, both homologues modulated LTR-driven expression. The present study revealed that ß-TrCP2 represents a novel protein participating in HIV-1 cycle and complete comprehension of the complex interplay occurring between the two F-Box will improve our understanding of HIV-1 infection. Résumé La molécule CD4 joue un rôle clef dans la pathogenèse du SIDA ; elle est requise pour l'entrée du virus dans les cellules permissives et la diminution de sa concentration au niveau de la surface cellulaire est une importante caractéristique des cellules infectées par le VIH-1. Le virus encode pas moins de trois protéines qui participent à ce processus Nef, Vpu et Env. La protéine Vpu lie CD4 au niveau du réticulum endoplasmique et induit sa dégradation en interagissant avec une protéine cellulaire nommée ß-TrCP 1. Cette protéine de type F-Box est une sous unité du complexe ubiquitine-ligase E3 SCFß-TrCP. Elle permet la reconnaissance du substrat par le complexe qui induit l'ubiquitination et la subséquente dégradation de diverses protéines cellulaires comme la ß-catenin ou IκBα. Les mammifères possèdent un homologue à ß-TrCP1appelé ß-TrCP2 (ou HOS). L'analyse comparative du domaine permettant la reconnaissance des substrats des deux homologues montre de frappantes similarités. Le rôle de ß-TrCP2 dans le cycle viral du VIH-1 n'a pas encore été évalué. Lors de cette étude, nous avons recherché l'existence de variants génétique de BTRC (codant pour ß-TrCP1) et nous avons évalué si ces variants pourraient affecter la dégradation des molécules CD4 induite par le virus. Nous avons ainsi identifié un polymorphisme présent dans la population humaine avec une fréquence allélique de 0.03 qui consiste en une substitution de l'alanine 507 par une sérine. Nous avons cependant montré par transfection dans des cellules HeLa CD4+ que ce variant se comporte comme ß-TrCP 1 en ce qui concerne la modulation de CD4. De plus, nous avons déterminé si ß-TrCP2 partageait avec son homologue des propriétés structurelles et fonctionnelles qui lui permettraient de lier Vpu, moduler la concentration de CD4 et ainsi prendre part à la pathogenèse du SIDA. Pour ce faire, nous avons établi un système d'expression temporaire dans des cellules HeLa CD4+. Par co-immunoprécipitation, nous avons montré que ß-TrCP2 lie Vpu et est capable d'induire la dégradation de CD4 aussi efficacement que ß-TrCP1. Dans deux différentes lignées cellulaires, HeLa CD4+ et Jurkat, la dégradation de CD4 n'a pu être complètement inhibée par le silencing individuel de ß-TrCP 1 ou ß-TrCP2, mais nécessitait le silencing simultané des 2 gènes. Nous avons évalué le rôle des deux homologues dans le cycle viral du VIH-1 en infectant des cellules Ghost avec le virus après avoir effectué un silencing des deux protéines. Nous avons ainsi montré que ß-TrCP 1 et ß-TrCP2 contribuent de manière additive à la dégradation de CD4 induite par une infection du VIH-1. Le silencing combiné des deux homologues inhiba complètement cette dégradation en l'absence de env et nef, prouvant qu'aucune autre voie ne participe à ce processus: En outre, nous avons montré que le silencing de ß-TrCP 1 mais pas celui de ß-TrCP2 induisait une diminution de l'expression virale sous contrôle du LTR. Nous n'avons cependant pas été en mesure de reconstituer cet effet en exprimant Tat et un gène reporteur sous contrôle du LTR dans des cellules HeLa CD4+. Le présent travail révèle que ß-TrCP2 représente une nouvelle protéine participant dans le cycle viral du VIH-1. Une complète compréhension de l'effet de chacun des deux homologues sur le cycle viral permettra d'améliorer notre compréhension de l'infection par le VIH-1.
Resumo:
Interactions between zinc (Zn) and phosphate (Pi) nutrition in plants have long been recognized, but little information is available on their molecular bases and biological significance. This work aimed at examining the effects of Zn deficiency on Pi accumulation in Arabidopsis thaliana and uncovering genes involved in the Zn-Pi synergy. Wild-type plants as well as mutants affected in Pi signalling and transport genes, namely the transcription factor PHR1, the E2-conjugase PHO2, and the Pi exporter PHO1, were examined. Zn deficiency caused an increase in shoot Pi content in the wild type as well as in the pho2 mutant, but not in the phr1 or pho1 mutants. This indicated that PHR1 and PHO1 participate in the coregulation of Zn and Pi homeostasis. Zn deprivation had a very limited effect on transcript levels of Pi-starvation-responsive genes such as AT4, IPS1, and microRNA399, or on of members of the high-affinity Pi transporter family PHT1. Interestingly, one of the PHO1 homologues, PHO1;H3, was upregulated in response to Zn deficiency. The expression pattern of PHO1 and PHO1;H3 were similar, both being expressed in cells of the root vascular cylinder and both localized to the Golgi when expressed transiently in tobacco cells. When grown in Zn-free medium, pho1;h3 mutant plants displayed higher Pi contents in the shoots than wild-type plants. This was, however, not observed in a pho1 pho1;h3 double mutant, suggesting that PHO1;H3 restricts root-to-shoot Pi transfer requiring PHO1 function for Pi homeostasis in response to Zn deficiency.
Resumo:
BACKGROUND: An important signal transduction pathway in plant defence depends on the accumulation of salicylic acid (SA). SA is produced in chloroplasts and the multidrug and toxin extrusion transporter ENHANCED DISEASE SUSCEPTIBILITY5 (EDS5; At4g39030) is necessary for the accumulation of SA after pathogen and abiotic stress. EDS5 is localized at the chloroplast and functions in transporting SA from the chloroplast to the cytoplasm. EDS5 has a homologue called EDS5H (EDS5 HOMOLOGUE; At2g21340) but its relationship to EDS5 has not been described and its function is not known. RESULTS: EDS5H exhibits about 72% similarity and 59% identity to EDS5. In contrast to EDS5 that is induced after pathogen inoculation, EDS5H was constitutively expressed in all green tissues, independently of pathogen infection. Both transporters are located at the envelope of the chloroplast, the compartment of SA biosynthesis. EDS5H is not involved with the accumulation of SA after inoculation with a pathogen or exposure to UV stress. A phylogenetic analysis supports the hypothesis that EDS5H may be an H(+)/organic acid antiporter like EDS5. CONCLUSIONS: The data based on genetic and molecular studies indicate that EDS5H despite its homology to EDS5 does not contribute to pathogen-induced SA accumulation like EDS5. EDS5H most likely transports related substances such as for example phenolic acids, but unlikely SA.
Resumo:
Pizgrischite, (Cu,Fe)Cu14PbBi17S35, is a new mineral species named after the type locality, Piz Grisch Mountain, Val Ferrera, Graubunden, Switzerland. This sulfosalt occurs as thin, striated, metallic lead-grey blades measuring up to I cm in length, embedded in quartz and associated with tetrahedrite, chalcopyrite, pyrite, sphalerite, emplectite and derivatives of the aikinite-bismuthinite series. In plane-polarized light, the new species is brownish grey with no perceptible pleochroism; under crossed nicols in oil immersion, it presents a weak anisotropy with dark brown tints. Minimum and maximum reflectance values (in %) in air are: 40.7-42.15 (470 nm), 41.2-43.1 (546 nm), 41.2-43.35 (589 nm) and 40.7-43.3 (650 nm). Cleavage is perfect along 001 I and well developed on {010}. Abundant polysynthetic twinning is observed on (010). The mean micro-indentation hardness is 190 kg/mm(2) (Mohs hardness 3.3), and the calculated density is 6.58 g/cm(3). Electron-microprobe analyses yield (wt%; mean result of seven analyses): Cu 16.48, Pb 2.10, Fe 0.77, Bi 60.70, Sb 0.35, S 19.16, Se 0.04, total 99.60. The resulting empirical chemical formula is (Cu15.24Fe0.80Pb0.60)(Sigma 16.64)(Bi17.07Sb0.17)(Sigma 17.24)(S35.09Se0.03)(Sigma 35.12), in accordance with the formula derived from the single-crystal refinement of the structure, (Cu,Fe)Cu14PbBi17S35. Pizgrischite is monoclinic, space group C2/m, with the following unit-cell parameters: a 35.054(2), b3.91123(I), c43.192(2) angstrom, beta 96.713(4)degrees, V5881.24 angstrom(3), Z=4. The strongest seven X-ray powder-diffraction lines [d in angstrom (I)(hkl)] are: 5.364(40)((6) over bar 04), 4.080(50)((8) over bar 05), 3.120(40)(118), 3.104(68)((3) over bar 18), 2.759(53) ((9) over bar 11),2.752(44)(910) and 1.956(100)(020). The crystal structure is an expanded monoclinic derivative of kupcikite. Pizgrischite belongs to the cuprobismutite series of bismuth sulfosalts but, sensu stricto, it is not a homologue of cuprobismutite. At the type locality. pizarischite is the result of the Alpine metamorphism under greenschist-facies conditions of pre-Tertiary hydrothermal Cu-Bi mineralization.
Resumo:
Ubiquitination of proteins is a post-translational modification, which decides on the cellular fate of the protein. Addition of ubiquitin moieties to proteins is carried out by the sequential action of three enzymes: E1, ubiquitin-activating enzyme; E2, ubiquitin-conjugating enzyme; and E3, ubiquitin ligase. The TRAF-interacting protein (TRAIP, TRIP, RNF206) functions as Really Interesting New Gene (RING)-type E3 ubiquitin ligase, but its physiological substrates are not yet known. TRAIP was reported to interact with TRAF [tumor necrosis factor (TNF) receptor-associated factors] and the two tumor suppressors CYLD and Syk (spleen tyrosine kinase). Ectopically expressed TRAIP was shown to inhibit nuclear factor-kappa B (NF-κB) signalling. However, recent results suggested a role for TRAIP in biological processes other than NF-κB regulation. Knock-down of TRAIP in human epidermal keratinocytes repressed cellular proliferation and induced a block in the G1/S phase of the cell cycle without affecting NF-κB signalling. TRAIP is necessary for embryonal development as mutations affecting the Drosophila homologue of TRAIP are maternal effect-lethal mutants, and TRAIP knock-out mice die in utero because of aberrant regulation of cell proliferation and apoptosis. These findings underline the tight link between TRAIP and cell proliferation. In this review, we summarize the data on TRAIP and put them into a larger perspective regarding the role of TRAIP in the control of tissue homeostasis.
Resumo:
The human Rad52 protein stimulates joint molecule formation by hRad51, a homologue of Escherichia coli RecA protein. Electron microscopic analysis of hRad52 shows that it self-associates to form ring structures with a diameter of approximately 10 nm. Each ring contains a hole at its centre. hRad52 binds to single and double-stranded DNA. In the ssDNA-hRad52 complexes, hRad52 was distributed along the length of the DNA, which exhibited a characteristic "beads on a string" appearance. At higher concentrations of hRad52, "super-rings" (approximately 30 nm) were observed and the ssDNA was collapsed upon itself. In contrast, in dsDNA-hRad52 complexes, some regions of the DNA remained protein-free while others, containing hRad52, interacted to form large protein-DNA networks. Saturating concentrations of hRad51 displaced hRad52 from ssDNA, whereas dsDNA-Rad52 complexes (networks) were more resistant to hRad51 invasion and nucleoprotein filament formation. When Rad52-Rad51-DNA complexes were probed with gold-conjugated hRad52 antibodies, the presence of globular hRad52 structures within the Rad51 nucleoprotein filament was observed. These data provide the first direct visualisation of protein-DNA complexes formed by the human Rad51 and Rad52 recombination/repair proteins.
Resumo:
The fundamental processes of membrane fission and fusion determine size and copy numbers of intracellular organelles. Although SNARE proteins and tethering complexes mediate intracellular membrane fusion, fission requires the presence of dynamin or dynamin-related proteins. Here we study these reactions in native yeast vacuoles and find that the yeast dynamin homologue Vps1 is not only an essential part of the fission machinery, but also controls membrane fusion by generating an active Qa SNARE-tethering complex pool, which is essential for trans-SNARE formation. Our findings provide new insight into the role of dynamins in membrane fusion by directly acting on SNARE proteins.
Resumo:
TNF family ligands and receptors fulfill a number of functions, mainly in the immune system. For example, the ligands BAFF and APRIL control growth and survival of mature Β cells at various stages of differentiation. TNF family ligands usually form homotrimers, but heteromers have also been described for lymphotoxin α1β2 and for BAFF and APRIL. Interestingly, twenty BAFF homotrimers can assemble into virus-like particles coined BAFF 60-mer, which are superior to BAFF 3-mer regarding their ability to signal in primary Β cells. A screen was performed in 293T cells, by co-transfecting differently tagged ligands, to identify six novel heteromers. The specificity of these novel heteromers, however, did not correspond to that of orphan receptors in the TNFR family. Little is known about heteromers of BAFF and APRIL, in particular their receptor-binding specificity and their ability to signal. A method to produce and purify heteromers of defined stoechiometry was developed, and the resulting reagents were used to demonstrate that BAFF2APRIL, like BAFF, binds to all BAFF receptors - namely BAFFR, TACI and Β CM A -, while APRIL2BAFF and APRIL only binds to TACI and BCMA. Heteromers could signal via their cognate receptors, sometimes as potently and sometimes less potently than homomers, depending on the receptors. A promising system to measure the activity of single-chain homo- and heteromers in vivo was set up: it measures mature Β cell rescue upon administration of single-chain ligands into BAFF-ko mice. To tackle the question of the physiological importance of BAFF 60-mer, a point mutation that prevents assembly of mouse BAFF into 60-mer while retaining its ability to form trimers was identified. This mutation (E247K) was introduced by homologous recombination into mouse embryonic stem cells that are now being used to generate knock-in mice. Results obtained in this work will help to better understand the role of various BAFF and APRIL forms that are elevated in a several autoimmune diseases. - Les ligands et récepteurs de la famille du TNF joue un rôle prédominant dans le système immunitaire. Par exemple, les ligands BAFF et APRIL contrôlent la croissance et la survie des cellules Β matures à différents stades de différenciation. Ces ligands existent souvent sous forme d'homotrimères (3-mer), bien que des héteromères aient été décrits pour la lymphotoxine α1β2 et pour BAFF et APRIL. Dans le cas de BAFF, vingt trimères peuvent, telle une particule virale, s'assembler en 60-mer qui surpasse le 3-mer pour signaler dans des cellules Β primaires. Un crible effectué dans des cellules 293T, par co-transfection de ligands différemment marqués, a permis d'identifier six nouveaux heteromères dont la spécificité n'a, hélas, pas correspondu à celle d'un récepteur orphelin de la famille du TNFR. Les connaissances sur la spécificité de liaison aux récepteurs et la capacité à signaler des heteromères de BAFF et d'APRIL sont fragmentaires. Une méthode pour produire et purifier des heteromères "simple chaîne" de stoechiométrie déterminée a été mise au point, et les réactifs ainsi obtenus utilisés pour démontrer que BAFF2APRIL, comme BAFF, lie tous les récepteurs de BAFF - c'est-à-dire BAFFR, TACI et BCMA -, alors qu'APRIL2BAFF et APRIL ne lient que TACI et BCMA. Les héteromères peuvent transmettre des signaux, parfois aussi bien et parfois plus faiblement que les homomères, selon les récepteurs. Un système prometteur pour mesurer l'activité des ligands simple chaîne in vivo a été mis au point. Il mesure la réapparition de cellules Β matures dans des souris déficientes pour BAFF après administration des ligands. Pour s'attaquer à la question de l'importance physiologique du 60-mer de BAFF, ime mutation empêchant l'assemblage en 60-mer sans affecter la capacité à former des trimères a été identifiée. Cette mutation (E247K) a été introduite par recombinaison homologue dans des cellules souches embryonnaires de souris qui sont utilisées pour obtenir des souris déficientes en BAFF 60-mer. Les résultats de ces travaux contribueront à mieux cerner le rôle des différentes formes de BAFF et d'APRIL produites en excès dans plusieurs maladies auto-immunes.
Resumo:
SUMMARY Genomic imprinting is an epigenetic mechanism of transcriptional regulation that ensures restriction of expression of a subset of mammalian genes to a single parental allele. The best studied example of imprinted gene regulation is the Igf2/H19 locus, which is also the most commonly altered by loss of imprinting (LOT) in cancer. LOT is associated with numerous hereditary diseases and several childhood, and adult cancers. Differential expression of reciprocal H19 and 1gf2 alleles in somatic cells depends on the methylation status of the imprinting control region (ICR) which regulates binding of CTCF, an ubiquitously expressed 11-zinc finger protein that binds specifically to non-methylated maternal ICR and thereby attenuates expression of Igf2, while it does not bind to methylated paternal ICR, which enables Igf2 expression. Initial ICR methylation occurs during gametogenesis by an as yet unknown mechanism. The accepted hypothesis is that the event of differential maternal and paternal DNA methylation depends on germ-line specific proteins. Our Laboratory identified a novel 11-zinc-finger protein CTCF-T (also known as CTCFL and BORIS) that is uniquely expressed in the male germ-line and is highly homologous within its zinc-finger region with CTCF. The amino-acid sequences flanking the zinc-finger regions of CTCF and CTCF-T have widely diverged, suggesting that though they could bind to the same DNA targets (ICRs) they are likely to have different functions. Interestingly, expression of CTCF-T and CTCF is mutually exclusive; CTCF-T-positive (CTCF-negative) cells occur in the stage of spermatogenesis that coincides with epigenetic reprogramming, including de novo DNA methylation. In our study we demonstrate the role that CTCF-T plays in genomic imprinting. Here we show that CTCF-T binds in vivo to the ICRs of Igf2/H19 and Dlk/Gt12 imprinted genes. In addition, we identified two novel proteins interacting with CTCF-T: a protein arginine methyltransferase PRMT7 and an arginine-rich histone H2A variant that we named trH2A. These interactions were confirmed and show that the two proteins interact with the amino-teiminal region of CTCF-T. Additionally, we show interaction of the amino- terminal region of CTCF-T with histones H1, H2A and H3. These results suggest that CTCF-T is a sequence-specific DNA (ICR) binding protein that associates with histones and recruits PRMT7. Interestingly, PRMT7 has a histone-methyltransferase activity. It has been shown that histone methylation can mark chromatin regions thereby directing DNA-methylation; thus, our hypothesis is that the CTCF-T protein-scaffold directs PRMT7 to methylate histone(s) assembled on ICRs, which marks chromatin for the recruitment of the de novo DNA methyltransferases to methylate DNA. To test this hypothesis, we developed an in vivo DNA-methylation assay using Xenopus laevis' oocytes, where H19 ICR and different expression cDNAs, including CTCF-T, PRMT7 and the de novo DNA methyltransferases (Dnmt3a, Dnmt3b and Dnmt3L) are microinjected into the nucleus. The methylation status of CpGs within the H19 ICR was analysed 48 or 72 hours after injection. Here we demonstrate that CpGs in the ICR are methylated in the presence of both CTCF-T and PRMT7, while control oocytes injected only with ICR did not show any methylation. Additionally, we showed for the first time that Dnmt3L is crucial for the establishment of the imprinting marks on H19 ICR. Moreover, we confirmed that Dnmt3a and Dnmt3b activities are complementary. Our data indicate that all three Dnmt3s are important for efficient de novo DNA methylation. In conclusion, we propose a mechanism for the establishment of de novo imprinting marks during spermatogenesis: the CTCF-T/PRMT7 protein complex directs histone methylation leading to sequence-specific de novo DNA methylation of H19 ICR. RESUME L'empreinte génomique parentale est un mécanisme épigénétique de régulation transcriptionelle qui se traduit par une expression différentielle des deux allèles de certains gènes, en fonction de leur origine parentale. L'exemple le mieux caractérisé de gènes soumis à l'empreinte génomique parentale est le locus Igf2/H19, qui est aussi le plus fréquemment altéré par relaxation d'empreinte (en anglais: loss of imprinting, LOI) dans les cancers. Cette relaxation d'empreinte est aussi associée à de nombreuses maladies héréditaires, ainsi qu'à de nombreux cancers chez l'enfant et l'adulte. Dans les cellules somatiques, les différences d'expression des allèles réciproques H19 et Ig12 est sous le contrôle d'une région ICR (Imprinting Control Region). La méthylation de cette région ICR régule l'ancrage de la protéine à douze doigts de zinc CTCF, qui se lie spécifiquement à l'ICR maternel non-méthylé, atténuant ainsi l'expression de Igf2, alors qu'elle ne s'ancre pas à l'ICR paternel méthyle. Le mécanisme qui accompagne la méthylation initiale de la région ICR durant la gamétogenèse n'a toujours pas été élucidé. L'hypothèse actuelle propose que la différence de méthylation entre l'ADN maternel et paternel résulte de l'expression de protéines propres aux zones germinales. Notre laboratoire a récemment identifié une nouvelle protéine à douze doigts de zinc, CTCF-T (aussi dénommée CTCFL et BORRIS), qui est exprimée uniquement dans les cellules germinales mâles, dont la partie à douze doigts de zinc est fortement homologue à la protéine CTCF. La séquence d'acides aminés de part et d'autre de cette région est quant à elle très divergente, ce qui implique que CTCF-T se lie sans doute au même ADN cible que CTCF, mais possède des fonctions différentes. De plus, l'expression de CTCF-T et de CTCF s'oppose mutuellement; l'expression de la protéine CTCF-T (cellules CTCF-T positives, CTCF negatives) qui a lieu pendant la spermatogenèse coïncide avec la reprogrammation épigénétique, notamment la méthylation de novo de l'ADN. La présente étude démontre le rôle essentiel joué par la protéine CTCF-T dans l'acquisition de l'empreinte génomique parentale. Nous montrons ici que CTCF-T s'associe in vivo avec les régions ICR des loci Igf2/H19 et Dlk/Gt12. Nous avons également identifié deux nouvelles protéines qui interagissent avec CTCF-T : une protéine arginine méthyl transférase PRMT7, et un variant de l'histone H2A, riche en arginine, que nous avons dénommé trH2A. Ces interactions ont été analysées plus en détail, et confinnent que ces deux protéines s'associent avec la région N-terminale de CTCF-T. Aussi, nous présentons une interaction de la région N-terminale de CTCF-T avec les histones H1, H2, et H3. Ces résultats suggèrent que CTCF-T est une protéine qui se lie spécifiquement aux régions ICR, qui s'associe avec différents histones et qui recrute PRMT7. PRMT7 possède une activité méthyl-tansférase envers les histones. Il a été montré que la méthylation des histones marque certains endroits de la chromatine, dirigeant ainsi la méthylation de l'ADN. Notre hypothèse est donc la suivante : la protéine CTCF-T sert de base qui dirige la méthylation des histones par PRMT7 dans les régions ICR, ce qui contribue à marquer la chromatine pour le recrutement de nouvelles méthyl transférases pour méthyler l'ADN. Afin de valider cette hypothèse, nous avons développé un système de méthylation de l'ADN in vivo, dans des oeufs de Xenopus laevis, dans le noyau desquels nous avons mico-injecté la région ICR du locus H19, ainsi que différents vecteurs d'expression pour CTCF-T, PRMT7, et les de novo méthyl transférases (Dnmt3a, Dnmt3b et Dnmt3L). Les CpGs méthyles de la région ICR du locus H19 ont été analysé 48 et 72 heures après l'injection. Cette technique nous a permis de démontrer que les CpGs de la région ICR sont méthyles en présence de CTCF-T et de PRMT7, tandis que les contrôles injectés seulement avec la région ICR ne présentent aucun signe de méthylation. De plus, nous démontrons pour la première fois que la protéine méthyl transférase Dnmt3L est déterminant pour l'établissement de l'empreinte génomique parentale au niveau de la région ICR du locus H19. Aussi, nous confirmons que les activités méthyl transférases de Dnmt3a et Dnmt3b sont complémentaires. Nos données indiquent que les trois protéines Dnmt3 sont impliquées dans la méthylation de l'ADN. En conclusion, nous proposons un mécanisme responsable de la mise en place de nouvelles empreintes génomiques pendant la spermatogenèse : le complexe protéique CTCF-T/PRMT7 dirige la méthylation des histones aboutissant à la méthylation de novo de l'ADN au locus H19.