2 resultados para treefrog
em Université de Lausanne, Switzerland
Resumo:
Investigating the mechanisms underlying female mate choice is important for sexual-selection theory, but also for population-genetic studies, because distinctive breeding strategies affect differently the dynamics of gene diversity within populations. Using field-monitoring, genetic-assignment, and laboratory-rearing methods, we investigated chorus attendance, mating success and offspring fitness in a population of lek-breeding tree-frogs (Hyla arborea) to test whether female choice is driven by good genes or complementary genes. Chorus attendance explained approximately 50% of the variance in male mating success, but did not correlate with offspring fitness. By contrast, offspring body mass and growth rate correlated with male attractiveness, measured as the number of matings obtained per night of calling. Genetic similarity between mating partners did not depart from random, and did not affect offspring fitness. We conclude that females are able to choose good partners under natural settings and obtain benefits from the good genes, rather than compatible genes, their offspring inherit. This heritability of fitness is likely to reduce effective population sizes below values previously estimated.
Resumo:
Sexual selection in lek-breeding species might drastically lower male effective population size, with potentially important consequences for evolutionary and conservation biology. Using field-monitoring and parental-assignment methods, we analyzed sex-specific variances in breeding success in a population of European treefrogs, to (1) help understanding the dynamics of genetic variance at sex-specific loci, and (2) better quantify the risk posed by genetic drift in this species locally endangered by habitat fragmentation. The variance in male mating success turned out to be markedly lower than values obtained from other amphibian species with polygamous mating systems. The ratio of effective breeding size to census breeding size was only slightly lower in males (0.44) than in females (0.57), in line with the patterns of genetic diversity previously reported from H. arborea sex chromosomes. Combining our results with data on age at maturity and adult survival, we show that the negative effect of the mating system is furthermore compensated by the effect of delayed maturity, so that the estimated instantaneous effective size broadly corresponded to census breeding size. We conclude that the lek-breeding system of treefrogs impacts only weakly the patterns of genetic diversity on sex-linked genes and the ability of natural populations to resist genetic drift.