226 resultados para transgenic common carp
em Université de Lausanne, Switzerland
Resumo:
Cytotoxic T cells (CTL) recognize short peptides that are derived from the proteolysis of endogenous cellular proteins and presented on the cell surface as a complex with MHC class I molecules. CTL can recognize single amino acid substitutions in proteins, including those involved in malignant transformation. The mutated sequence of an oncogene may be presented on the cell surface as a peptide, and thus represents a potential target antigen for tumour therapy. The p21ras gene is mutated in a wide variety of tumours and since the transforming mutations result in amino acid substitutions at positions 12, 13 and 61 of the protein, a limited number of ras peptides could potentially be used in the treatment of a wide variety of malignancies. A common substitution is Val for Gly at position 12 of p21ras. In this study, we show that the peptide sequence from position 5 to position 14 with Val at position 12-ras p5-14 (Val-12)-has a motif which allows it to bind to HLA-A2.1. HLA-A2.1-restricted ras p5-14 (Val-12)-specific CTL were induced in mice transgenic for both HLA-A2.1 and human beta2-microglobulin after in vivo priming with the peptide. The murine CTL could recognize the ras p5-14 (Val-12) peptide when they were presented on both murine and human target cells bearing HLA-A2.1. No cross-reactivity was observed with the native peptide ras p5-14 (Gly-12), and this peptide was not immunogenic in HLA-A2.1 transgenic mice. This represents an interesting model for the study of an HLA-restricted CD8 cytotoxic T cell response to a defined tumour antigen in vivo.
Resumo:
Mammary carcinomas developing in SV40 transgenic WAP-T mice arise in two distinct histological phenotypes: as differentiated low-grade and undifferentiated high-grade tumors. We integrated different types of information such as histological grading, analysis of aCGH-based gene copy number and gene expression profiling to provide a comprehensive molecular description of mammary tumors in WAP-T mice. Applying a novel procedure for the correlation of gene copy number with gene expression on a global scale, we observed in tumor samples a global coherence between genotype and transcription. This coherence can be interpreted as a matched transcriptional regulation inherited from the cells of tumor origin and determined by the activity of cancer driver genes. Despite common recurrent genomic aberrations, e.g. gain of chr. 15 in most WAP-T tumors, loss of chr. 19 frequently occurs only in low-grade tumors. These tumors show features of "basal-like" epithelial differentiation, particularly expression of keratin 14. The high-grade tumors are clearly separated from the low-grade tumors by strong expression of the Met gene and by coexpression of epithelial (e.g. keratin 18) and mesenchymal (e.g. vimentin) markers. In high-grade tumors, the expression of the nonmutated Met protein is associated with Met-locus amplification and Met activity. The role of Met as a cancer driver gene is supported by the contribution of active Met signaling to motility and growth of mammary tumor-derived cells. Finally, we discuss the independent origin of low- and high-grade tumors from distinct cells of tumor origin, possibly luminal progenitors, distinguished by Met gene expression and Met signaling.
Resumo:
In addition to their CD1d-restricted T cell receptor (TCR), natural killer T (NKT) cells express various receptors normally associated with NK cells thought to act, in part, as modulators of TCR signaling. Immunoreceptor-tyrosine activation (ITAM) and inhibition (ITIM) motifs associated with NK receptors may augment or attenuate perceived TCR signals respectively, potentially influencing NKT cell development and function. ITIM-containing Ly49 family receptors expressed by NKT cells are proposed to play a role in their development and function. We have produced mice transgenic for the ITAM-associated Ly49D and ITIM-containing Ly49A receptors and their common ligand H2-Dd to determine the importance of these signaling interplays in NKT cell development. Ly49D/H2-Dd transgenic mice had selectively and severely reduced numbers of thymic and peripheral NKT cells, whereas both ligand and Ly49D transgenics had normal numbers of NKT cells. CD1d tetramer staining revealed a blockade of NKT cell development at an early precursor stage. Coexpression of a Ly49A transgene partially rescued NKT cell development in Ly49D/H2-Dd transgenics, presumably due to attenuation of ITAM signaling. Thus, Ly49D-induced ITAM signaling is incompatible with the early development of cells expressing semi-invariant CD1d-restricted TCRs and appropriately harmonized ITIM-ITAM signaling is likely to play an important role in the developmental program of NKT cells.
Resumo:
Sera from transgenic mice (TM) carrying human genes of alpha 1-acid glycoprotein (orosomucoid or ORM) have been analyzed by isoelectrofocusing and subsequent immunoblotting with antihuman ORM antibodies. With this technique it is possible to reveal selectively the human protein secreted in the TM sera. Orosomucoid bands present in TM sera have been compared with those of the most common human ORM phenotypes to correlate the products of specific genes to previously identified genetic variants. In this paper, we report the identification of the genes encoding for variants ORM1 F1 and ORM2 A, which are genes AGP-A and AGP-B/B' respectively. The nucleotide sequences of these genes are known; therefore a direct correlation between variants and specific amino acid sequences can be established.
Resumo:
Hypertension and chronic kidney disease (CKD) are complex traits representing major global health problems. Multiple genome-wide association studies have identified common variants in the promoter of the UMOD gene, which encodes uromodulin, the major protein secreted in normal urine, that cause independent susceptibility to CKD and hypertension. Despite compelling genetic evidence for the association between UMOD risk variants and disease susceptibility in the general population, the underlying biological mechanism is not understood. Here, we demonstrate that UMOD risk variants increased UMOD expression in vitro and in vivo. Uromodulin overexpression in transgenic mice led to salt-sensitive hypertension and to the presence of age-dependent renal lesions similar to those observed in elderly individuals homozygous for UMOD promoter risk variants. The link between uromodulin and hypertension is due to activation of the renal sodium cotransporter NKCC2. We demonstrated the relevance of this mechanism in humans by showing that pharmacological inhibition of NKCC2 was more effective in lowering blood pressure in hypertensive patients who are homozygous for UMOD promoter risk variants than in other hypertensive patients. Our findings link genetic susceptibility to hypertension and CKD to the level of uromodulin expression and uromodulin's effect on salt reabsorption in the kidney. These findings point to uromodulin as a therapeutic target for lowering blood pressure and preserving renal function.
Resumo:
Astrocyte reactivity is a hallmark of neurodegenerative diseases (ND), but its effects on disease outcomes remain highly debated. Elucidation of the signaling cascades inducing reactivity in astrocytes during ND would help characterize the function of these cells and identify novel molecular targets to modulate disease progression. The Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) pathway is associated with reactive astrocytes in models of acute injury, but it is unknown whether this pathway is directly responsible for astrocyte reactivity in progressive pathological conditions such as ND. In this study, we examined whether the JAK/STAT3 pathway promotes astrocyte reactivity in several animal models of ND. The JAK/STAT3 pathway was activated in reactive astrocytes in two transgenic mouse models of Alzheimer's disease and in a mouse and a nonhuman primate lentiviral vector-based model of Huntington's disease (HD). To determine whether this cascade was instrumental for astrocyte reactivity, we used a lentiviral vector that specifically targets astrocytes in vivo to overexpress the endogenous inhibitor of the JAK/STAT3 pathway [suppressor of cytokine signaling 3 (SOCS3)]. SOCS3 significantly inhibited this pathway in astrocytes, prevented astrocyte reactivity, and decreased microglial activation in models of both diseases. Inhibition of the JAK/STAT3 pathway within reactive astrocytes also increased the number of huntingtin aggregates, a neuropathological hallmark of HD, but did not influence neuronal death. Our data demonstrate that the JAK/STAT3 pathway is a common mediator of astrocyte reactivity that is highly conserved between disease states, species, and brain regions. This universal signaling cascade represents a potent target to study the role of reactive astrocytes in ND.
Resumo:
Acute and chronic respiratory failure is one of the major and potentially life-threatening features in individuals with myotonic dystrophy type 1 (DM1). Despite several clinical demonstrations showing respiratory problems in DM1 patients, the mechanisms are still not completely understood. This study was designed to investigate whether the DMSXL transgenic mouse model for DM1 exhibits respiratory disorders and, if so, to identify the pathological changes underlying these respiratory problems. Using pressure plethysmography, we assessed the breathing function in control mice and DMSXL mice generated after large expansions of the CTG repeat in successive generations of DM1 transgenic mice. Statistical analysis of breathing function measurements revealed a significant decrease in the most relevant respiratory parameters in DMSXL mice, indicating impaired respiratory function. Histological and morphometric analysis showed pathological changes in diaphragmatic muscle of DMSXL mice, characterized by an increase in the percentage of type I muscle fibers, the presence of central nuclei, partial denervation of end-plates (EPs) and a significant reduction in their size, shape complexity and density of acetylcholine receptors, all of which reflect a possible breakdown in communication between the diaphragmatic muscles fibers and the nerve terminals. Diaphragm muscle abnormalities were accompanied by an accumulation of mutant DMPK RNA foci in muscle fiber nuclei. Moreover, in DMSXL mice, the unmyelinated phrenic afferents are significantly lower. Also in these mice, significant neuronopathy was not detected in either cervical phrenic motor neurons or brainstem respiratory neurons. Because EPs are involved in the transmission of action potentials and the unmyelinated phrenic afferents exert a modulating influence on the respiratory drive, the pathological alterations affecting these structures might underlie the respiratory impairment detected in DMSXL mice. Understanding mechanisms of respiratory deficiency should guide pharmaceutical and clinical research towards better therapy for the respiratory deficits associated with DM1.
Resumo:
Retroviral transfer of T cell antigen receptor (TCR) genes selected by circumventing tolerance to broad tumor- and leukemia-associated antigens in human leukocyte antigen (HLA)-A*0201 (A2.1) transgenic (Tg) mice allows the therapeutic reprogramming of human T lymphocytes. Using a human CD8 x A2.1/Kb mouse derived TCR specific for natural peptide-A2.1 (pA2.1) complexes comprising residues 81-88 of the human homolog of the murine double-minute 2 oncoprotein, MDM2(81-88), we found that the heterodimeric CD8 alpha beta coreceptor, but not normally expressed homodimeric CD8 alpha alpha, is required for tetramer binding and functional redirection of TCR- transduced human T cells. CD8+T cells that received a humanized derivative of the MDM2 TCR bound pA2.1 tetramers only in the presence of an anti-human-CD8 anti-body and required more peptide than wild-type (WT) MDM2 TCR+T cells to mount equivalent cytotoxicity. They were, however, sufficiently effective in recognizing malignant targets including fresh leukemia cells. Most efficient expression of transduced TCR in human T lymphocytes was governed by mouse as compared to human constant (C) alphabeta domains, as demonstrated with partially humanized and murinized TCR of primary mouse and human origin, respectively. We further observed a reciprocal relationship between the level of Tg WT mouse relative to natural human TCR expression, resulting in T cells with decreased normal human cell surface TCR. In contrast, natural human TCR display remained unaffected after delivery of the humanized MDM2 TCR. These results provide important insights into the molecular basis of TCR gene therapy of malignant disease.
Resumo:
Anatomical structures and mechanisms linking genes to neuropsychiatric disorders are not deciphered. Reciprocal copy number variants at the 16p11.2 BP4-BP5 locus offer a unique opportunity to study the intermediate phenotypes in carriers at high risk for autism spectrum disorder (ASD) or schizophrenia (SZ). We investigated the variation in brain anatomy in 16p11.2 deletion and duplication carriers. Beyond gene dosage effects on global brain metrics, we show that the number of genomic copies negatively correlated to the gray matter volume and white matter tissue properties in cortico-subcortical regions implicated in reward, language and social cognition. Despite the near absence of ASD or SZ diagnoses in our 16p11.2 cohort, the pattern of brain anatomy changes in carriers spatially overlaps with the well-established structural abnormalities in ASD and SZ. Using measures of peripheral mRNA levels, we confirm our genomic copy number findings. This combined molecular, neuroimaging and clinical approach, applied to larger datasets, will help interpret the relative contributions of genes to neuropsychiatric conditions by measuring their effect on local brain anatomy.Molecular Psychiatry advance online publication, 25 November 2014; doi:10.1038/mp.2014.145.
Resumo:
Previous studies have demonstrated that a region in the left ventral occipito-temporal (LvOT) cortex is highly selective to the visual forms of written words and objects relative to closely matched visual stimuli. Here, we investigated why LvOT activation is not higher for reading than picture naming even though written words and pictures of objects have grossly different visual forms. To compare neuronal responses for words and pictures within the same LvOT area, we used functional magnetic resonance imaging adaptation and instructed participants to name target stimuli that followed briefly presented masked primes that were either presented in the same stimulus type as the target (word-word, picture-picture) or a different stimulus type (picture-word, word-picture). We found that activation throughout posterior and anterior parts of LvOT was reduced when the prime had the same name/response as the target irrespective of whether the prime-target relationship was within or between stimulus type. As posterior LvOT is a visual form processing area, and there was no visual form similarity between different stimulus types, we suggest that our results indicate automatic top-down influences from pictures to words and words to pictures. This novel perspective motivates further investigation of the functional properties of this intriguing region.
Resumo:
Obesity and depression represent a growing health concern worldwide. For many years, basic science and medicine have considered obesity as a metabolic illness, while depression was classified a psychiatric disorder. Despite accumulating evidence suggesting that obesity and depression may share commonalities, the causal link between eating and mood disorders remains to be fully understood. This etiology is highly complex, consisting of multiple environmental and genetic risk factors that interact with each other. In this review, we sought to summarize the preclinical and clinical evidence supporting a common etiology for eating and mood disorders, with a particular emphasis on signaling pathways involved in the maintenance of energy balance and mood stability, among which orexigenic and anorexigenic neuropeptides, metabolic factors, stress responsive hormones, cytokines, and neurotrophic factors.
Resumo:
The activity of the thiazide-sensitive Na(+)/Cl(-) cotransporter (NCC) and of the amiloride-sensitive epithelial Na(+) channel (ENaC) is pivotal for blood pressure regulation. NCC is responsible for Na(+) reabsorption in the distal convoluted tubule (DCT) of the nephron, while ENaC reabsorbs the filtered Na(+) in the late DCT and in the cortical collecting ducts (CCD) providing the final renal adjustment to Na(+) balance. Here, we aim to highlight the recent advances made using transgenic mouse models towards the understanding of the regulation of NCC and ENaC function relevant to the control of sodium balance and blood pressure. We thus like to pave the way for common mechanisms regulating these two sodium-transporting proteins and their potential implication in structural remodeling of the nephron segments and Na(+) and Cl(-) reabsorption.
Resumo:
Résumé : Les relations entre un parasite et son hôte sont avant tout marquées par le coût pour l'hôte que représente la ponction de ressources au profit du parasite et ses conséquences sur les traits d'histoires de vie de l'hôte. Pour contenir la réduction de leur valeur reproductive, les hôtes ont acquis au cours de l'évolution des mécanismes soit de lutte contre les parasites, soit de réallocations des ressources. Curieusement les effets des ectoparasites sur la biologie de mammifères ont été peu étudiés. Dans une première expérience à long terme, nous avons examiné sous un angle intégratif si les puces Nosopsyllus fasciatus affectent certains paramètres physiologiques des campagnols des champs Microtus arvalis. Nous avons également testé si les puces peuvent réduire la longévité et si oui, si ce pourrait être dû à une accélération de la sénescence. Ensuite nous avons testé si la simple activation répétée du système immunitaire comme lors d'une infestation chronique pouvait aussi réduire la longévité. Dans une dernière expérience, nous avons d'abord testé si l'infestation par des puces de jeunes campagnols au stade néonatal (21 jours) pouvait modifier leur développement et leur phénotype adulte. Puis nous avons testé si la modification du phénotype adulte est une réponse prédite et potentiellement adaptative pour minimiser les effets des puces à l'âge adulte. Nos résultats montrent que l'infestation par des puces réduit la croissance subadulte, induit une forte anémie et une immunodépression, et augmente le métabolisme de repos. De plus les puces réduisent la longévité et la taille des testicules, réduisant fortement le succès reproducteur potentiel des individus parasités. La taille finale, c'est-à-dire le développement pré-adulte, détermine en grande part la longévité. La réduction de longévité ne devrait pas être due à l'investissement au profit du système immunitaire car l'activation chronique seule du système immunitaire ne réduit pas la longévité. L'infestation néonatale retarde légèrement le développement mais surtout modifie l'hématocrite et réduit les performances locomotrices des campagnols plus de 3 mois après l'infestation. Les effets immédiats du parasitisme sur la physiologie semblent bien supérieurs comparés aux effets à long terme. Nous n'avons pas d'éléments permettant d'affirmer que le parasitisme néonatal prépare les campagnols à faire face aux puces à l'âge adulte. Au contraire, le parasitisme néonatal interagit sur le parasitisme adulte pour augmenter le métabolisme de repos. Cette thèse offre une vision intégrative des mécanismes par lesquels les puces peuvent affecter la valeur reproductive de leurs hôtes. De façon générale, ces résultats 35 montrent l'importance des puces comme force de sélection chez les campagnols. Il est indispensable de prendre en compte les ectoparasites dans l'étude de l'écologie et des dynamiques de populations chez les mammifères. Summary : The relationship between a parasite and its host is fundamentally marked by the costs for host of the withdrawals of resources by parasite and the subsequent reduction in host life-history traits. Hosts have evolved a number of strategies to reduce these costs, either by fighting against the parasite directly or by reallocating resources to reduce costs on lifetime reproductive value. The effects of ectoparasites on burrowing mammals have been scarcely studied. In a first long-term experiment, we examined how fleas Nosopsyllus fasciatus affect physiological levels of the common vole, Microtus arvalis. We also examined whether fleas reduce longevity and if so, if it is due to an early senescence pattern. Then we tested if experimental activation of the immune system by repeated injections of an antigen could result in a shorter longevity. In the last experiment, we tested if short-lasting neonatal parasitism can have long-term effects on phenotype, and if these effects could induce a predictive response to reduce damages when parasitized at the adult stage. We found that parasitism by flea reduced subadult growth, induced anaemia and immunodepression, and increased energy consumption even when resting. Moreover fleas reduce longevity and testes size associated to splenomegaly, suggesting an overall reduction in fitness but we did not find any pattern of accelerated senescence explaining the early death of parasitized voles compared to non-parasitzed. The cost of mounting an immune response throughout life does not impair longevity, suggesting that it is the cost of parasitism that limits the longevity and not the immune investment. Neonatal infestation by fleas has long-term effects on physiology and reduces motor activity more than 3 months after infestation. The modification of physiology due to long-term effects seems weak compared to the immediate effects of adult infestation. We found no evidence that neonatal parasitism prepares voles to mount a predictive adaptive response in order to reduce effects of fleas on fitness components. On the contrary, neonatal parasitism seems to worsen the effect of adult parasitism. This thesis offers an integrative view of mechanisms by which fleas affect their host at the individual level. Overall, our results demonstrate the importance of fleas as a selective force in voles. These results highlight the importance of ectoparasitism in ecology of micromarnrnals and suggest a role in the dynamic of host populations.
Resumo:
? Arbuscular mycorrhizal fungi colonize the roots of most monocotyledons and dicotyledons despite their different root architecture and cell patterning. Among the cereal hosts of arbuscular mycorrhizal fungi, Oryza sativa (rice) possesses a peculiar root system composed of three different types of roots: crown roots; large lateral roots; and fine lateral roots. Characteristic is the constitutive formation of aerenchyma in crown roots and large lateral roots and the absence of cortex from fine lateral roots. Here, we assessed the distribution of colonization by Glomus intraradices within this root system and determined its effect on root system architecture. ? Large lateral roots are preferentially colonized, and fine lateral roots are immune to arbuscular mycorrhizal colonization. Fungal preference for large lateral roots also occurred in sym mutants that block colonization of the root beyond rhizodermal penetration. ? Initiation of large lateral roots is significantly induced by G. intraradices colonization and does not require a functional common symbiosis signaling pathway from which some components are known to be needed for symbiosis-mediated lateral root induction in Medicago truncatula. ? Our results suggest variation of symbiotic properties among the different rice root-types and induction of the preferred tissue by arbuscular mycorrhizal fungi. Furthermore, signaling for arbuscular mycorrhizal-elicited alterations of the root system differs between rice and M. truncatula.
Resumo:
In cognition, common factors play a crucial role. For example, different types of intelligence are highly correlated, pointing to a common factor, which is often called g. One might expect that a similar common factor would also exist for vision. Surprisingly, no one in the field has addressed this issue. Here, we provide the first evidence that there is no common factor for vision. We tested 40 healthy students' performance in six basic visual paradigms: visual acuity, vernier discrimination, two visual backward masking paradigms, Gabor detection, and bisection discrimination. One might expect that performance levels on these tasks would be highly correlated because some individuals generally have better vision than others due to superior optics, better retinal or cortical processing, or enriched visual experience. However, only four out of 15 correlations were significant, two of which were nontrivial. These results cannot be explained by high intraobserver variability or ceiling effects because test-retest reliability was high and the variance in our student population is commensurate with that from other studies with well-sighted populations. Using a variety of tests (e.g., principal components analysis, Bayes theorem, test-retest reliability), we show the robustness of our null results. We suggest that neuroplasticity operates during everyday experience to generate marked individual differences. Our results apply only to the normally sighted population (i.e., restricted range sampling). For the entire population, including those with degenerate vision, we expect different results.