72 resultados para top executive turnover

em Université de Lausanne, Switzerland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eukaryotic mRNA transcription and turnover is controlled by an enzymatic machinery that includes RNA polymerase II and the 3' to 5' exosome. The activity of these protein complexes is modulated by additional factors, such as the nuclear RNA polymerase II-associated factor 1 (Paf1c) and the cytoplasmic Superkiller (SKI) complex, respectively. Their components are conserved across uni- as well as multi-cellular organisms, including yeast, Arabidopsis, and humans. Among them, SKI8 displays multiple facets on top of its cytoplasmic role in the SKI complex. For instance, nuclear yeast ScSKI8 has an additional function in meiotic recombination, whereas nuclear human hSKI8 (unlike ScSKI8) associates with Paf1c. The Arabidopsis SKI8 homolog VERNALIZATION INDEPENDENT 3 (VIP3) has been found in Paf1c as well; however, whether it also has a role in the SKI complex remains obscure so far. We found that transgenic VIP3-GFP, which complements a novel vip3 mutant allele, localizes to both nucleus and cytoplasm. Consistently, biochemical analyses suggest that VIP3-GFP associates with the SKI complex. A role of VIP3 in the turnover of nuclear encoded mRNAs is supported by random-primed RNA sequencing of wild-type and vip3 seedlings, which indicates mRNA stabilization in vip3. Another SKI subunit homolog mutant, ski2, displays a dwarf phenotype similar to vip3. However, unlike vip3, it displays neither early flowering nor flower development phenotypes, suggesting that the latter reflect VIP3's role in Paf1c. Surprisingly then, transgenic ScSKI8 rescued all aspects of the vip3 phenotype, suggesting that the dual role of SKI8 depends on species-specific cellular context.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Body composition, resting energy expenditure (REE), and whole body protein metabolism were studied in 26 young and 28 elderly Gambian men matched for body mass index during the dry season in a rural village in The Gambia. REE was measured by indirect calorimetry (hood system) in the fasting state and after five successive meals. Rates of whole body nitrogen flux, protein synthesis, and protein breakdown were determined in the fed state from the level of isotopic enrichment of urinary ammonia over a period of 12 h after a single oral dose of [15N]glycine. Expressed in absolute value, REE was significantly lower in the elderly compared with the young group (3.21 +/- 0.07 vs. 4.04 +/- 0.07 kJ/min, P < 0.001) and when adjusted to body weight (3.29 +/- 0.05 vs. 3.96 +/- 0.05 kJ/min, P < 0.0001) and fat-free mass (FFM; 3.38 +/- 0.01 vs. 3.87 +/- 0.01 kJ/min, P < 0.0001). The rate of protein synthesis averaged 207 +/- 13 g protein/day in the elderly and 230 +/- 13 g protein/day in the young group, whereas protein breakdown averaged 184 +/- 13 g protein/day in the elderly and 203 +/- 13 g protein/day in the young group (nonsignificant). When values were adjusted for body weight or FFM, they did not reveal any difference between the two groups. It is concluded that the reduced REE adjusted for body composition observed in elderly Gambian men is not explained by a decrease in protein turnover.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pharmacogenomics is a field with origins in the study of monogenic variations in drug metabolism in the 1950s. Perhaps because of these historical underpinnings, there has been an intensive investigation of 'hepatic pharmacogenes' such as CYP450s and liver drug metabolism using pharmacogenomics approaches over the past five decades. Surprisingly, kidney pathophysiology, attendant diseases and treatment outcomes have been vastly under-studied and under-theorized despite their central importance in maintenance of health, susceptibility to disease and rational personalized therapeutics. Indeed, chronic kidney disease (CKD) represents an increasing public health burden worldwide, both in developed and developing countries. Patients with CKD suffer from high cardiovascular morbidity and mortality, which is mainly attributable to cardiovascular events before reaching end-stage renal disease. In this paper, we focus our analyses on renal function before end-stage renal disease, as seen through the lens of pharmacogenomics and human genomic variation. We herein synthesize the recent evidence linking selected Very Important Pharmacogenes (VIP) to renal function, blood pressure and salt-sensitivity in humans, and ways in which these insights might inform rational personalized therapeutics. Notably, we highlight and present the rationale for three applications that we consider as important and actionable therapeutic and preventive focus areas in renal pharmacogenomics: 1) ACE inhibitors, as a confirmed application, 2) VDR agonists, as a promising application, and 3) moderate dietary salt intake, as a suggested novel application. Additionally, we emphasize the putative contributions of gene-environment interactions, discuss the implications of these findings to treat and prevent hypertension and CKD. Finally, we conclude with a strategic agenda and vision required to accelerate advances in this under-studied field of renal pharmacogenomics with vast significance for global public health.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have demonstrated that a region in the left ventral occipito-temporal (LvOT) cortex is highly selective to the visual forms of written words and objects relative to closely matched visual stimuli. Here, we investigated why LvOT activation is not higher for reading than picture naming even though written words and pictures of objects have grossly different visual forms. To compare neuronal responses for words and pictures within the same LvOT area, we used functional magnetic resonance imaging adaptation and instructed participants to name target stimuli that followed briefly presented masked primes that were either presented in the same stimulus type as the target (word-word, picture-picture) or a different stimulus type (picture-word, word-picture). We found that activation throughout posterior and anterior parts of LvOT was reduced when the prime had the same name/response as the target irrespective of whether the prime-target relationship was within or between stimulus type. As posterior LvOT is a visual form processing area, and there was no visual form similarity between different stimulus types, we suggest that our results indicate automatic top-down influences from pictures to words and words to pictures. This novel perspective motivates further investigation of the functional properties of this intriguing region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cerebral microangiopathy (CMA) has been associated with executive dysfunction and fronto-parietal neural network disruption. Advances in magnetic resonance imaging allow more detailed analyses of gray (e.g., voxel-based morphometry-VBM) and white matter (e.g., diffusion tensor imaging-DTI) than traditional visual rating scales. The current study investigated patients with early CMA and healthy control subjects with all three approaches. Neuropsychological assessment focused on executive functions, the cognitive domain most discussed in CMA. The DTI and age-related white matter changes rating scales revealed convergent results showing widespread white matter changes in early CMA. Correlations were found in frontal and parietal areas exclusively with speeded, but not with speed-corrected executive measures. The VBM analyses showed reduced gray matter in frontal areas. All three approaches confirmed the hypothesized fronto-parietal network disruption in early CMA. Innovative methods (DTI) converged with results from conventional methods (visual rating) while allowing greater spatial and tissue accuracy. They are thus valid additions to the analysis of neural correlates of cognitive dysfunction. We found a clear distinction between speeded and nonspeeded executive measures in relationship to imaging parameters. Cognitive slowing is related to disease severity in early CMA and therefore important for early diagnostics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When speech is degraded, word report is higher for semantically coherent sentences (e.g., her new skirt was made of denim) than for anomalous sentences (e.g., her good slope was done in carrot). Such increased intelligibility is often described as resulting from "top-down" processes, reflecting an assumption that higher-level (semantic) neural processes support lower-level (perceptual) mechanisms. We used time-resolved sparse fMRI to test for top-down neural mechanisms, measuring activity while participants heard coherent and anomalous sentences presented in speech envelope/spectrum noise at varying signal-to-noise ratios (SNR). The timing of BOLD responses to more intelligible speech provides evidence of hierarchical organization, with earlier responses in peri-auditory regions of the posterior superior temporal gyrus than in more distant temporal and frontal regions. Despite Sentence content × SNR interactions in the superior temporal gyrus, prefrontal regions respond after auditory/perceptual regions. Although we cannot rule out top-down effects, this pattern is more compatible with a purely feedforward or bottom-up account, in which the results of lower-level perceptual processing are passed to inferior frontal regions. Behavioral and neural evidence that sentence content influences perception of degraded speech does not necessarily imply "top-down" neural processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract (English)General backgroundMultisensory stimuli are easier to recognize, can improve learning and a processed faster compared to unisensory ones. As such, the ability an organism has to extract and synthesize relevant sensory inputs across multiple sensory modalities shapes his perception of and interaction with the environment. A major question in the scientific field is how the brain extracts and fuses relevant information to create a unified perceptual representation (but also how it segregates unrelated information). This fusion between the senses has been termed "multisensory integration", a notion that derives from seminal animal single-cell studies performed in the superior colliculus, a subcortical structure shown to create a multisensory output differing from the sum of its unisensory inputs. At the cortical level, integration of multisensory information is traditionally deferred to higher classical associative cortical regions within the frontal, temporal and parietal lobes, after extensive processing within the sensory-specific and segregated pathways. However, many anatomical, electrophysiological and neuroimaging findings now speak for multisensory convergence and interactions as a distributed process beginning much earlier than previously appreciated and within the initial stages of sensory processing.The work presented in this thesis is aimed at studying the neural basis and mechanisms of how the human brain combines sensory information between the senses of hearing and touch. Early latency non-linear auditory-somatosensory neural response interactions have been repeatedly observed in humans and non-human primates. Whether these early, low-level interactions are directly influencing behavioral outcomes remains an open question as they have been observed under diverse experimental circumstances such as anesthesia, passive stimulation, as well as speeded reaction time tasks. Under laboratory settings, it has been demonstrated that simple reaction times to auditory-somatosensory stimuli are facilitated over their unisensory counterparts both when delivered to the same spatial location or not, suggesting that audi- tory-somatosensory integration must occur in cerebral regions with large-scale spatial representations. However experiments that required the spatial processing of the stimuli have observed effects limited to spatially aligned conditions or varying depending on which body part was stimulated. Whether those divergences stem from task requirements and/or the need for spatial processing has not been firmly established.Hypotheses and experimental resultsIn a first study, we hypothesized that auditory-somatosensory early non-linear multisensory neural response interactions are relevant to behavior. Performing a median split according to reaction time of a subset of behavioral and electroencephalographic data, we found that the earliest non-linear multisensory interactions measured within the EEG signal (i.e. between 40-83ms post-stimulus onset) were specific to fast reaction times indicating a direct correlation of early neural response interactions and behavior.In a second study, we hypothesized that the relevance of spatial information for task performance has an impact on behavioral measures of auditory-somatosensory integration. Across two psychophysical experiments we show that facilitated detection occurs even when attending to spatial information, with no modulation according to spatial alignment of the stimuli. On the other hand, discrimination performance with probes, quantified using sensitivity (d'), is impaired following multisensory trials in general and significantly more so following misaligned multisensory trials.In a third study, we hypothesized that behavioral improvements might vary depending which body part is stimulated. Preliminary results suggest a possible dissociation between behavioral improvements andERPs. RTs to multisensory stimuli were modulated by space only in the case when somatosensory stimuli were delivered to the neck whereas multisensory ERPs were modulated by spatial alignment for both types of somatosensory stimuli.ConclusionThis thesis provides insight into the functional role played by early, low-level multisensory interac-tions. Combining psychophysics and electrical neuroimaging techniques we demonstrate the behavioral re-levance of early and low-level interactions in the normal human system. Moreover, we show that these early interactions are hermetic to top-down influences on spatial processing suggesting their occurrence within cerebral regions having access to large-scale spatial representations. We finally highlight specific interactions between auditory space and somatosensory stimulation on different body parts. Gaining an in-depth understanding of how multisensory integration normally operates is of central importance as it will ultimately permit us to consider how the impaired brain could benefit from rehabilitation with multisensory stimula-Abstract (French)Background théoriqueDes stimuli multisensoriels sont plus faciles à reconnaître, peuvent améliorer l'apprentissage et sont traités plus rapidement comparé à des stimuli unisensoriels. Ainsi, la capacité qu'un organisme possède à extraire et à synthétiser avec ses différentes modalités sensorielles des inputs sensoriels pertinents, façonne sa perception et son interaction avec l'environnement. Une question majeure dans le domaine scientifique est comment le cerveau parvient à extraire et à fusionner des stimuli pour créer une représentation percep- tuelle cohérente (mais aussi comment il isole les stimuli sans rapport). Cette fusion entre les sens est appelée "intégration multisensorielle", une notion qui provient de travaux effectués dans le colliculus supérieur chez l'animal, une structure sous-corticale possédant des neurones produisant une sortie multisensorielle différant de la somme des entrées unisensorielles. Traditionnellement, l'intégration d'informations multisen- sorielles au niveau cortical est considérée comme se produisant tardivement dans les aires associatives supérieures dans les lobes frontaux, temporaux et pariétaux, suite à un traitement extensif au sein de régions unisensorielles primaires. Cependant, plusieurs découvertes anatomiques, électrophysiologiques et de neuroimageries remettent en question ce postulat, suggérant l'existence d'une convergence et d'interactions multisensorielles précoces.Les travaux présentés dans cette thèse sont destinés à mieux comprendre les bases neuronales et les mécanismes impliqués dans la combinaison d'informations sensorielles entre les sens de l'audition et du toucher chez l'homme. Des interactions neuronales non-linéaires précoces audio-somatosensorielles ont été observées à maintes reprises chez l'homme et le singe dans des circonstances aussi variées que sous anes- thésie, avec stimulation passive, et lors de tâches nécessitant un comportement (une détection simple de stimuli, par exemple). Ainsi, le rôle fonctionnel joué par ces interactions à une étape du traitement de l'information si précoce demeure une question ouverte. Il a également été démontré que les temps de réaction en réponse à des stimuli audio-somatosensoriels sont facilités par rapport à leurs homologues unisensoriels indépendamment de leur position spatiale. Ce résultat suggère que l'intégration audio- somatosensorielle se produit dans des régions cérébrales possédant des représentations spatiales à large échelle. Cependant, des expériences qui ont exigé un traitement spatial des stimuli ont produits des effets limités à des conditions où les stimuli multisensoriels étaient, alignés dans l'espace ou encore comme pouvant varier selon la partie de corps stimulée. Il n'a pas été établi à ce jour si ces divergences pourraient être dues aux contraintes liées à la tâche et/ou à la nécessité d'un traitement de l'information spatiale.Hypothèse et résultats expérimentauxDans une première étude, nous avons émis l'hypothèse que les interactions audio- somatosensorielles précoces sont pertinentes pour le comportement. En effectuant un partage des temps de réaction par rapport à la médiane d'un sous-ensemble de données comportementales et électroencépha- lographiques, nous avons constaté que les interactions multisensorielles qui se produisent à des latences précoces (entre 40-83ms) sont spécifique aux temps de réaction rapides indiquant une corrélation directe entre ces interactions neuronales précoces et le comportement.Dans une deuxième étude, nous avons émis l'hypothèse que si l'information spatiale devient perti-nente pour la tâche, elle pourrait exercer une influence sur des mesures comportementales de l'intégration audio-somatosensorielles. Dans deux expériences psychophysiques, nous montrons que même si les participants prêtent attention à l'information spatiale, une facilitation de la détection se produit et ce toujours indépendamment de la configuration spatiale des stimuli. Cependant, la performance de discrimination, quantifiée à l'aide d'un index de sensibilité (d') est altérée suite aux essais multisensoriels en général et de manière plus significative pour les essais multisensoriels non-alignés dans l'espace.Dans une troisième étude, nous avons émis l'hypothèse que des améliorations comportementales pourraient différer selon la partie du corps qui est stimulée (la main vs. la nuque). Des résultats préliminaires suggèrent une dissociation possible entre une facilitation comportementale et les potentiels évoqués. Les temps de réactions étaient influencés par la configuration spatiale uniquement dans le cas ou les stimuli somatosensoriels étaient sur la nuque alors que les potentiels évoqués étaient modulés par l'alignement spatial pour les deux types de stimuli somatosensorielles.ConclusionCette thèse apporte des éléments nouveaux concernant le rôle fonctionnel joué par les interactions multisensorielles précoces de bas niveau. En combinant la psychophysique et la neuroimagerie électrique, nous démontrons la pertinence comportementale des ces interactions dans le système humain normal. Par ailleurs, nous montrons que ces interactions précoces sont hermétiques aux influences dites «top-down» sur le traitement spatial suggérant leur occurrence dans des régions cérébrales ayant accès à des représentations spatiales de grande échelle. Nous soulignons enfin des interactions spécifiques entre l'espace auditif et la stimulation somatosensorielle sur différentes parties du corps. Approfondir la connaissance concernant les bases neuronales et les mécanismes impliqués dans l'intégration multisensorielle dans le système normale est d'une importance centrale car elle permettra d'examiner et de mieux comprendre comment le cerveau déficient pourrait bénéficier d'une réhabilitation avec la stimulation multisensorielle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Dysmenorrhea is the leading cause of recurrent short-term school absenteeism among adolescent girls. Yet, studies of menstrual symptoms in the light of adolescent psychological background seldom appear in the recent literature. This study aims to determine whether adolescent girls with severe dysmenorrhea (SD) have different body perception on top of poorer psychological health. Methods: We analyzed data from the Swiss Multicentre Adolescent Survey on Health (SMASH 2002) among a nationally representative sample of adolescents (n = 7548; 3340 females) aged 16 to 20 years attending post-mandatory education. Dysmenorrhea was defined as presence of abdominal or back pain during menstruation on the last 12 months. The severity of dysmenorrhea was defined according to the impact on daily activity and was assessed by 3 questions on the way menstruations interfere with daily life: 1) "You feel well and have normal activities", 2)"you must stay at home" and 3) "you feel restricted in your school or professional activities". Studied variables were: depressive symptoms, suicidal attempt, sexual abuse, health perception in general, body satisfaction, desire to modify body shape, and disordered eating behavior (DEB) with restrictive or bulimic tendency. Controlling variables included socio-economic status (SES) as measured by both parent's level of education, gynecological age (age-age at menarche), academic track (student/apprentice) and age. Results: 12.4% (95% CI: 11.0-14) declared severe dysmenorrhea, 74.2% (95% CI: 71.8-76.5) mild to moderate dysmenorrhea and 13,4% (95% CI: 11.5-15.5) had no dysmenorrhea. Compared to their peers, controlling for confounding variables, subjects with SD were more numerous to report depressive symptoms (AOR: 1.73; 95% CI: 1.39-2.15), to feel in poor health (AOR: 1.44; 95% CI: 1.14-1.81). Moreover, the proportion of those reporting dissatisfaction with their body appearance was higher (AOR: 1.48; 95% CI: 1.00-2.18). Conclusion: Patients with SD not only show a different profile than their peers in terms of their mental health and health perception, but also a distinct relation to their body. Therefore clinicians should pay particular attention to patients with SD and offer them a global evaluation keeping in mind what can be associated with SD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although glycogen (Glyc) is the main carbohydrate storage component, the role of Glyc in the brain during prolonged wakefulness is not clear. The aim of this study was to determine brain Glyc concentration ([]) and turnover time (tau) in euglycemic conscious and undisturbed rats, compared to rats maintained awake for 5h. To measure the metabolism of [1-(13)C]-labeled Glc into Glyc, 23 rats received a [1-(13)C]-labeled Glc solution as drink (10% weight per volume in tap water) ad libitum as their sole source of exogenous carbon for a "labeling period" of either 5h (n=13), 24h (n=5) or 48 h (n=5). Six of the rats labeled for 5h were continuously maintained awake by acoustic, tactile and olfactory stimuli during the labeling period, which resulted in slightly elevated corticosterone levels. Brain [Glyc] measured biochemically after focused microwave fixation in the rats maintained awake (3.9+/-0.2 micromol/g, n=6) was not significantly different from that of the control group (4.0+/-0.1 micromol/g, n=7; t-test, P>0.5). To account for potential variations in plasma Glc isotopic enrichment (IE), Glyc IE was normalized by N-acetyl-aspartate (NAA) IE. A simple mathematical model was developed to derive brain Glyc turnover time as 5.3h with a fit error of 3.2h and NAA turnover time as 15.6h with a fit error of 6.5h, in the control rats. A faster tau(Glyc) (2.9h with a fit error of 1.2h) was estimated in the rats maintained awake for 5h. In conclusion, 5h of prolonged wakefulness mainly activates glycogen metabolism, but has minimal effect on brain [Glyc].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been reported in the literature that executive functions may be fractioned into updating, shifting, and inhibition. The present study aimed to explore whether these executive sub-components can be identified in a more age-heterogeneous sample and see if they are prone to an age-related decline. We tested the performances of 81 individuals aged from 18 to 88 years old in each executive sub-component, working memory, fluid intelligence and processing speed. Correlation analysis revealed only a slight positive relationship between the two updating measures. A linear decrement with age was observed only for two complex executive tests. Tasks indexing working memory, processing speed and fluid intelligence showed a stronger linear decline with age than executive tasks. In conclusion, our results did not replicate the executive structure known from the literature, and revealed that decrement in executive function is not an unavoidable concomitant of aging but rather concerns specific executive tasks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A growing number of studies have been addressing the relationship between theory of mind (TOM) and executive functions (EF) in patients with acquired neurological pathology. In order to provide a global overview on the main findings, we conducted a systematic review on group studies where we aimed to (1) evaluate the patterns of impaired and preserved abilities of both TOM and EF in groups of patients with acquired neurological pathology and (2) investigate the existence of particular relations between different EF domains and TOM tasks. The search was conducted in Pubmed/Medline. A total of 24 articles met the inclusion criteria. We considered for analysis classical clinically accepted TOM tasks (first- and second-order false belief stories, the Faux Pas test, Happe's stories, the Mind in the Eyes task, and Cartoon's tasks) and EF domains (updating, shifting, inhibition, and access). The review suggests that (1) EF and TOM appear tightly associated. However, the few dissociations observed suggest they cannot be reduced to a single function; (2) no executive subprocess could be specifically associated with TOM performances; (3) the first-order false belief task and the Happe's story task seem to be less sensitive to neurological pathologies and less associated to EF. Even though the analysis of the reviewed studies demonstrates a close relationship between TOM and EF in patients with acquired neurological pathology, the nature of this relationship must be further investigated. Studies investigating ecological consequences of TOM and EF deficits, and intervention researches may bring further contributions to this question.