15 resultados para tidal stream turbines

em Université de Lausanne, Switzerland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurally adjusted ventilatory assist (NAVA) is a ventilation assist mode that delivers pressure in proportionality to electrical activity of the diaphragm (Eadi). Compared to pressure support ventilation (PS), it improves patient-ventilator synchrony and should allow a better expression of patient's intrinsic respiratory variability. We hypothesize that NAVA provides better matching in ventilator tidal volume (Vt) to patients inspiratory demand. 22 patients with acute respiratory failure, ventilated with PS were included in the study. A comparative study was carried out between PS and NAVA, with NAVA gain ensuring the same peak airway pressure as PS. Robust coefficients of variation (CVR) for Eadi and Vt were compared for each mode. The integral of Eadi (ʃEadi) was used to represent patient's inspiratory demand. To evaluate tidal volume and patient's demand matching, Range90 = 5-95 % range of the Vt/ʃEadi ratio was calculated, to normalize and compare differences in demand within and between patients and modes. In this study, peak Eadi and ʃEadi are correlated with median correlation of coefficients, R > 0.95. Median ʃEadi, Vt, neural inspiratory time (Ti_ ( Neural )), inspiratory time (Ti) and peak inspiratory pressure (PIP) were similar in PS and NAVA. However, it was found that individual patients have higher or smaller ʃEadi, Vt, Ti_ ( Neural ), Ti and PIP. CVR analysis showed greater Vt variability for NAVA (p < 0.005). Range90 was lower for NAVA than PS for 21 of 22 patients. NAVA provided better matching of Vt to ʃEadi for 21 of 22 patients, and provided greater variability Vt. These results were achieved regardless of differences in ventilatory demand (Eadi) between patients and modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION. Neurally Adjusted Ventilatory Assist (NAVA) is a new ventilatory mode in which ventilator settings are adjusted based on the electrical activity detected in the diaphragm (Eadi). This mode offers significant advantages in mechanical ventilation over standard pressure support (PS) modes, since ventilator input is determined directly from patient ventilatory demand. Therefore, it is expected that tidal volume (Vt) under NAVA would show better correlation with Eadi compared with PS, and exhibit greater variability due to the variability in the Eadi input to the ventilator. OBJECTIVES. To compare tidal volume variability in PS and NAVA ventilation modes, and its correlation with patient ventilatory demand (as characterized by maximum Eadi). METHODS. Acomparative study of patient-ventilator interaction was performed for 22 patients during standard PS with clinician determined ventilator settings; and NAVA, with NAVA gain set to ensure the same peak airway pressure as the total pressure obtained in PS. A 20 min continuous recording was performed in each ventilator mode. Respiratory rate, Vt, and Eadi were recorded. Tidal volume variance and Pearson correlation coefficient between Vt and Eadi were calculated for each patient. A periodogram was plotted for each ventilator mode and each patient, showing spectral power as a function of frequency to assess variability. RESULTS. Median, lower quartile and upper quartile values for Vt variance and Vt/Eadi correlation are shown in Table 1. The NAVA cohort exhibits substantially greater correlation and variance than the PS cohort. Power spectrums for Vt and Eadi are shown in Fig. 1 (PS and NAVA) for a typical patient. The enlarged section highlights how changes in Eadi are highly synchronized with NAVA ventilation, but less so for PS. CONCLUSIONS. There is greater variability in tidal volume and correlation between tidal volume and diaphragmatic electrical activity with NAVA compared to PS. These results are consistent with the improved patient-ventilator synchrony reported in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION. Neurally Adjusted Ventilatory Assist (NAVA) is an assisted ventilatorymode in which the ventilator is driven by the electrical activity of the diaphragm (Eadi).NAVAimproves patient-ventilator synchrony [1] but little is known about how to set the NAVA gaini.e., how to choose the ratio between Eadi and delivered pressure. The aim of the present studywas to assess the relationship between Eadi and tidal volume (Vt) at various NAVA gainsettings and to evaluate whether modifying the gain influenced this relationship in non-invasivelyventilated (NIV) patients.METHODS. Prospective interventional study comparing 3 values of NAVA gain during NIV(20 min each). NAVA100 was set by the clinician according to the manufacturer's recommendations.In NAVA50 and NAVA150 the gain was set as -50% and +50% of NAVA100gain respectively. Vt and maximal Eadi value (Eadi max) were recorded. The ratio Vt/Eadi wasthen assessed for each breath. 5-95% range (range 90) of Vt/Eadi was calculated for eachpatient at each NAVA gain setting. Vt/Eadi ratio has the advantage to give an objectiveassessment Vt/Eadi max relationship independently from the nature of this relationship. Asmaller Range90 indicates a better matching of Vt to Eadi max.RESULTS. 12 patients were included, 5 had obstructive pulmonary disease and 2 mixedobstructive and restrictive disease. For NAVA100, the median [IQR] Range 90 was 32[19-87]. For NAVA150 Range 90 was 37 [20-95] and for NAVA50 Range 90 was 33 [16-92].That means that globally NAVA100 allowed a better match between Eadi max and Vt thanNAVA50 and 150. However, by patient, NAVA100 had the lowest Range 90 value for only 4patients (33%), NAVA150 for 2 (17%) and NAVA50 for 6 (50%) patients, indicating thatNAVA100 was not the best NAVA gain for minimizing Range 90 in every patients.Comparing the lowest Range 90 value to the next lowest for each patient, showed that 3 patientshad differences of less than 10% (one each for NAVA50, NAVA100 and NAVA150). Theremainder had differences from 17 to 24%, indicating that most patients (9/12 or 75%) had aclear better match between Eadi and Vt for one specific NAVA gain.CONCLUSIONS. Different NAVA gains yielded markedly different ability to match Vt toEadi max. This approach could be a new way to determine optimalNAVAgain for each patientbut require further investigations.REFERENCE. Piquilloud L, et al. Intensive Care Med 2011;37:263-71.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of sulfur and strontium isotopes as tracers for the source/s of water contaminants have been applied to the water of the Llobregat River system (NE Spain). Surface water samples from June 1997 were collected from the Llobregat River and its main tributaries and creeks. The chemistry of most stream waters are controlled mainly by the weathering of Tertiary chemical sediments within the drainage basin. The largest variation in delta(34)S values were found in the small creeks with values ranging from -9.9 to 15parts per thousand, whilst in the main river channels values ranged from 6.3 to 12.4parts per thousand. The Sr-87/Sr-86 ratio for dissolved strontium ranged from 0.70795 for a non-polluted site to 0.70882 for a polluted one. Most of the waters with high NO3 and low Ca/Na ratio converge to the same Sr-87/Sr-86 value, pointing to dominant pollutant end member contribution or a mixing of pollutants with an isotopic composition around 0.7083-0.7085. Although the concentration of the natural inputs in the river for sulfate and strontium are high, as a result of the sulfate outcrops within the geology of the basin, their isotopic characteristics suggest that they can be used as a discriminating device in water pollution problems. However to establish the detailed characteristics of the isotopes as geochemical tools, specific high-resolution case studies are necessary in small areas, where the inputs are well known.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION. Patient-ventilator asynchrony is a frequent issue in non invasivemechanical ventilation (NIV) and leaks at the patient-mask interface play a major role in itspathogenesis. NIV algorithms alleviate the deleterious impact of leaks and improve patient-ventilator interaction. Neurally adusted ventilatory assist (NAVA), a neurally triggered modethat avoids interferences between leaks and the usual pneumatic trigger, could further improvepatient-ventilator interaction in NIV patients.OBJECTIVES. To evaluate the feasibility ofNAVAin patients receiving a prophylactic postextubationNIV and to compare the respective impact ofPSVandNAVAwith and withoutNIValgorithm on patient-ventilator interaction.METHODS. Prospective study conducted in 16 beds adult critical care unit (ICU) in a tertiaryuniversity hospital. Over a 2 months period, were included 17 adult medical ICU patientsextubated for less than 2 h and in whom a prophylactic post-extubation NIV was indicated.Patients were randomly mechanically ventilated for 10 min with: PSV without NIV algorithm(PSV-NIV-), PSV with NIV algorithm (PSV-NIV+),NAVAwithout NIV algorithm (NAVANIV-)and NAVA with NIV algorithm (NAVA-NIV+). Breathing pattern descriptors, diaphragmelectrical activity, leaks volume, inspiratory trigger delay (Tdinsp), inspiratory time inexcess (Tiexcess) and the five main asynchronies were quantified. Asynchrony index (AI) andasynchrony index influenced by leaks (AIleaks) were computed.RESULTS. Peak inspiratory pressure and diaphragm electrical activity were similar in thefour conditions. With both PSV and NAVA, NIV algorithm significantly reduced the level ofleak (p\0.01). Tdinsp was not affected by NIV algorithm but was shorter in NAVA than inPSV (p\0.01). Tiexcess was shorter in NAVA and PSV-NIV+ than in PSV-NIV- (p\0.05).The prevalence of double triggering was significantly lower in PSV-NIV+ than in NAVANIV+.As compared to PSV,NAVAsignificantly reduced the prevalence of premature cyclingand late cycling while NIV algorithm did not influenced premature cycling. AI was not affectedby NIV algorithm but was significantly lower in NAVA than in PSV (p\0.05). AIleaks wasquasi null with NAVA and significantly lower than in PSV (p\0.05).CONCLUSIONS. NAVA is feasible in patients receiving a post-extubation prophylacticNIV. NAVA and NIV improve patient-ventilator synchrony in different manners. NAVANIV+offers the best patient-ventilator interaction. Clinical studies are required to assess thepotential clinical benefit of NAVA in patients receiving NIV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To assess the suitability of a hot-wire anemometer infant monitoring system (Florian, Acutronic Medical Systems AG, Hirzel, Switzerland) for measuring flow and tidal volume (Vt) proximal to the endotracheal tube during high-frequency oscillatory ventilation. DESIGN: In vitro model study. SETTING: Respiratory research laboratory. SUBJECT: In vitro lung model simulating moderate to severe respiratory distress. INTERVENTION: The lung model was ventilated with a SensorMedics 3100A ventilator. Vt was recorded from the monitor display (Vt-disp) and compared with the gold standard (Vt-adiab), which was calculated using the adiabatic gas equation from pressure changes inside the model. MEASUREMENTS AND MAIN RESULTS: A range of Vt (1-10 mL), frequencies (5-15 Hz), pressure amplitudes (10-90 cm H2O), inspiratory times (30% to 50%), and Fio2 (0.21-1.0) was used. Accuracy was determined by using modified Bland-Altman plots (95% limits of agreement). An exponential decrease in Vt was observed with increasing oscillatory frequency. Mean DeltaVt-disp was 0.6 mL (limits of agreement, -1.0 to 2.1) with a linear frequency dependence. Mean DeltaVt-disp was -0.2 mL (limits of agreement, -0.5 to 0.1) with increasing pressure amplitude and -0.2 mL (limits of agreement, -0.3 to -0.1) with increasing inspiratory time. Humidity and heating did not affect error, whereas increasing Fio2 from 0.21 to 1.0 increased mean error by 6.3% (+/-2.5%). CONCLUSIONS: The Florian infant hot-wire flowmeter and monitoring system provides reliable measurements of Vt at the airway opening during high-frequency oscillatory ventilation when employed at frequencies of 8-13 Hz. The bedside application could improve monitoring of patients receiving high-frequency oscillatory ventilation, favor a better understanding of the physiologic consequences of different high-frequency oscillatory ventilation strategies, and therefore optimize treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Before a patient can be connected to a mechanical ventilator, the controls of the apparatus need to be set up appropriately. Today, this is done by the intensive care professional. With the advent of closed loop controlled mechanical ventilation, methods will be needed to select appropriate start up settings automatically. The objective of our study was to test such a computerized method which could eventually be used as a start-up procedure (first 5-10 minutes of ventilation) for closed-loop controlled ventilation. DESIGN: Prospective Study. SETTINGS: ICU's in two adult and one children's hospital. PATIENTS: 25 critically ill adult patients (age > or = 15 y) and 17 critically ill children selected at random were studied. INTERVENTIONS: To stimulate 'initial connection', the patients were disconnected from their ventilator and transiently connected to a modified Hamilton AMADEUS ventilator for maximally one minute. During that time they were ventilated with a fixed and standardized breath pattern (Test Breaths) based on pressure controlled synchronized intermittent mandatory ventilation (PCSIMV). MEASUREMENTS AND MAIN RESULTS: Measurements of airway flow, airway pressure and instantaneous CO2 concentration using a mainstream CO2 analyzer were made at the mouth during application of the Test-Breaths. Test-Breaths were analyzed in terms of tidal volume, expiratory time constant and series dead space. Using this data an initial ventilation pattern consisting of respiratory frequency and tidal volume was calculated. This ventilation pattern was compared to the one measured prior to the onset of the study using a two-tailed paired t-test. Additionally, it was compared to a conventional method for setting up ventilators. The computer-proposed ventilation pattern did not differ significantly from the actual pattern (p > 0.05), while the conventional method did. However the scatter was large and in 6 cases deviations in the minute ventilation of more than 50% were observed. CONCLUSIONS: The analysis of standardized Test Breaths allows automatic determination of an initial ventilation pattern for intubated ICU patients. While this pattern does not seem to be superior to the one chosen by the conventional method, it is derived fully automatically and without need for manual patient data entry such as weight or height. This makes the method potentially useful as a start up procedure for closed-loop controlled ventilation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural selection drives local adaptation, potentially even at small temporal and spatial scales. As a result, adaptive genetic and phenotypic divergence can occur among populations living in different habitats. We investigated patterns of differentiation between contrasting lake and stream habitats in the cyprinid fish European minnow (Phoxinus phoxinus) at both the morphological and genomic levels using geometric morphometrics and AFLP markers, respectively. We also used a spatial correlative approach to identify AFLP loci associated with environmental variables representing potential selective forces responsible for adaptation to divergent habitats. Our results identified different morphologies between lakes and streams, with lake fish presenting a deeper body and caudal peduncle compared to stream fish. Body shape variation conformed to a priori predictions concerning biomechanics and swimming performance in lakes vs. streams. Moreover, morphological differentiation was found to be associated with several environmental variables, which could impose selection on body and caudal peduncle shape. We found adaptive genetic divergence between these contrasting habitats in the form of 'outlier' loci (2.9%) whose genetic divergence exceeded neutral expectations. We also detected additional loci (6.6%) not associated with habitat type (lake vs. stream), but contributing to genetic divergence between populations. Specific environmental variables related to trophic dynamics, landscape topography and geography were associated with several neutral and outlier loci. These results provide new insights into the morphological divergence and genetic basis of adaptation to differentiated habitats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: In acute respiratory failure, arterial blood gas analysis (ABG) is used to diagnose hypercapnia. Once non-invasive ventilation (NIV) is initiated, ABG should at least be repeated within 1 h to assess PaCO2 response to treatment in order to help detect NIV failure. The main aim of this study was to assess whether measuring end-tidal CO2 (EtCO2) with a dedicated naso-buccal sensor during NIV could predict PaCO2 variation and/or PaCO2 absolute values. The additional aim was to assess whether active or passive prolonged expiratory maneuvers could improve the agreement between expiratory CO2 and PaCO2. METHODS: This is a prospective study in adult patients suffering from acute hypercapnic respiratory failure (PaCO2 ≥ 45 mmHg) treated with NIV. EtCO2 and expiratory CO2 values during active and passive expiratory maneuvers were measured using a dedicated naso-buccal sensor and compared to concomitant PaCO2 values. The agreement between two consecutive values of EtCO2 (delta EtCO2) and two consecutive values of PaCO2 (delta PaCO2) and between PaCO2 and concomitant expiratory CO2 values was assessed using the Bland and Altman method adjusted for the effects of repeated measurements. RESULTS: Fifty-four datasets from a population of 11 patients (8 COPD and 3 non-COPD patients), were included in the analysis. PaCO2 values ranged from 39 to 80 mmHg, and EtCO2 from 12 to 68 mmHg. In the observed agreement between delta EtCO2 and deltaPaCO2, bias was -0.3 mmHg, and limits of agreement were -17.8 and 17.2 mmHg. In agreement between PaCO2 and EtCO2, bias was 14.7 mmHg, and limits of agreement were -6.6 and 36.1 mmHg. Adding active and passive expiration maneuvers did not improve PaCO2 prediction. CONCLUSIONS: During NIV delivered for acute hypercapnic respiratory failure, measuring EtCO2 using a dedicating naso-buccal sensor was inaccurate to predict both PaCO2 and PaCO2 variations over time. Active and passive expiration maneuvers did not improve PaCO2 prediction. TRIAL REGISTRATION: ClinicalTrials.gov: NCT01489150.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quest for Orthologs (QfO) is a community effort with the goal to improve and benchmark orthology predictions. As quality assessment assumes prior knowledge on species phylogenies, we investigated the congruency between existing species trees by comparing the relationships of 147 QfO reference organisms from six Tree of Life (ToL)/species tree projects: The National Center for Biotechnology Information (NCBI) taxonomy, Opentree of Life, the sequenced species/species ToL, the 16S ribosomal RNA (rRNA) database, and trees published by Ciccarelli et al. (Ciccarelli FD, et al. 2006. Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283-1287) and by Huerta-Cepas et al. (Huerta-Cepas J, Marcet-Houben M, Gabaldon T. 2014. A nested phylogenetic reconstruction approach provides scalable resolution in the eukaryotic Tree Of Life. PeerJ PrePrints 2:223) Our study reveals that each species tree suggests a different phylogeny: 87 of the 146 (60%) possible splits of a dichotomous and rooted tree are congruent, while all other splits are incongruent in at least one of the species trees. Topological differences are observed not only at deep speciation events, but also within younger clades, such as Hominidae, Rodentia, Laurasiatheria, or rosids. The evolutionary relationships of 27 archaea and bacteria are highly inconsistent. By assessing 458,108 gene trees from 65 genomes, we show that consistent species topologies are more often supported by gene phylogenies than contradicting ones. The largest concordant species tree includes 77 of the QfO reference organisms at the most. Results are summarized in the form of a consensus ToL (http://swisstree.vital-it.ch/species_tree) that can serve different benchmarking purposes.