5 resultados para threshold trait

em Université de Lausanne, Switzerland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sleep spindles are synchronized 11-15 Hz electroencephalographic (EEG) oscillations predominant during nonrapid-eye-movement sleep (NREMS). Rhythmic bursting in the reticular thalamic nucleus (nRt), arising from interplay between Ca(v)3.3-type Ca(2+) channels and Ca(2+)-dependent small-conductance-type 2 (SK2) K(+) channels, underlies spindle generation. Correlative evidence indicates that spindles contribute to memory consolidation and protection against environmental noise in human NREMS. Here, we describe a molecular mechanism through which spindle power is selectively extended and we probed the actions of intensified spindling in the naturally sleeping mouse. Using electrophysiological recordings in acute brain slices from SK2 channel-overexpressing (SK2-OE) mice, we found that nRt bursting was potentiated and thalamic circuit oscillations were prolonged. Moreover, nRt cells showed greater resilience to transit from burst to tonic discharge in response to gradual depolarization, mimicking transitions out of NREMS. Compared with wild-type littermates, chronic EEG recordings of SK2-OE mice contained less fragmented NREMS, while the NREMS EEG power spectrum was conserved. Furthermore, EEG spindle activity was prolonged at NREMS exit. Finally, when exposed to white noise, SK2-OE mice needed stronger stimuli to arouse. Increased nRt bursting thus strengthens spindles and improves sleep quality through mechanisms independent of EEG slow waves (<4 Hz), suggesting SK2 signaling as a new potential therapeutic target for sleep disorders and for neuropsychiatric diseases accompanied by weakened sleep spindles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A low arousal threshold is believed to predispose to breathing instability during sleep. The present authors hypothesised that trazodone, a nonmyorelaxant sleep-promoting agent, would increase the effort-related arousal threshold in obstructive sleep apnoea (OSA) patients. In total, nine OSA patients, mean+/-sd age 49+/-9 yrs, apnoea/hypopnoea index 52+/-32 events.h(-1), were studied on 2 nights, one with trazodone at 100 mg and one with a placebo, in a double blind randomised fashion. While receiving continuous positive airway pressure (CPAP), repeated arousals were induced: 1) by increasing inspired CO(2) and 2) by stepwise decreases in CPAP level. Respiratory effort was measured with an oesophageal balloon. End-tidal CO(2 )tension (P(ET,CO(2))) was monitored with a nasal catheter. During trazodone nights, compared with placebo nights, the arousals occurred at a higher P(ET,CO(2)) level (mean+/-sd 7.30+/-0.57 versus 6.62+/-0.64 kPa (54.9+/-4.3 versus 49.8+/-4.8 mmHg), respectively). When arousals were triggered by increasing inspired CO(2) level, the maximal oesophageal pressure swing was greater (19.4+/-4.0 versus 13.1+/-4.9 cm H(2)O) and the oesophageal pressure nadir before the arousals was lower (-5.1+/-4.7 versus -0.38+/-4.2 cm H(2)O) with trazodone. When arousals were induced by stepwise CPAP drops, the maximal oesophageal pressure swings before the arousals did not differ. Trazodone at 100 mg increased the effort-related arousal threshold in response to hypercapnia in obstructive sleep apnoea patients and allowed them to tolerate higher CO(2) levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adaptive dynamics shows that a continuous trait under frequency dependent selection may first converge to a singular point followed by spontaneous transition from a unimodal trait distribution into a bimodal one, which is called "evolutionary branching". Here, we study evolutionary branching in a deme-structured population by constructing a quantitative genetic model for the trait variance dynamics, which allows us to obtain an analytic condition for evolutionary branching. This is first shown to agree with previous conditions for branching expressed in terms of relatedness between interacting individuals within demes and obtained from mutant-resident systems. We then show this branching condition can be markedly simplified when the evolving trait affect fecundity and/or survival, as opposed to affecting population structure, which would occur in the case of the evolution of dispersal. As an application of our model, we evaluate the threshold migration rate below which evolutionary branching cannot occur in a pairwise interaction game. This agrees very well with the individual-based simulation results.