405 resultados para therapeutic monitoring
em Université de Lausanne, Switzerland
Resumo:
Therapeutic drug monitoring (TDM), combined in certain situations with pharmacogenetic tests of metabolism, has proven a valuable tool for psychopharmacotherapy. Uncertain drug adherence, suboptimal tolerability, nonresponse at therapeutic doses, or pharmacokinetic drug-drug interactions are typical situations when measurement of medication concentrations is helpful. This article is an adaptation of guidelines recently issued by the AGNP-TDM group (Hiemke et al., www. agnp.de), but its content focuses mainly on the TDM of antidepressants. Finally, the potential benefits of TDM for optimization of pharmacotherapy can only be obtained if the method is adequately integrated into the clinical treatment process.
Resumo:
As for other drugs, there is a large interindividual variability of the plasma concentrations of antidepressants for a given dose. Within the last 2 decades, a very large number of pharmacogenetic studies have made it possible to understand the importance of genetic factors on the disposition of drugs in the organism, many of them at the levels of drug metabolism. Polymorphism of CYP2D6 and of other drug-metabolizing enzymes may thus lead to very large differences in drug exposure between patients and possibly also to toxicity or ineffective drug concentrations in some subjects. In consequence, dose recommendations of antidepressants based on genotypes, justified by the principle of administering bioequivalent individualized drug doses, are now proposed. However, blood (and thus possibly brain) concentrations also depend on other factors than the genetic makeup of the patients. Therapeutic drug monitoring of antidepressants allows us to take into account the influence of factors such as comedications, diet, smoking habit, impaired organ function, and compliance. Therapeutic drug monitoring and genotyping are thus complementary, and their combined use contributes to improve pharmacotherapy with antidepressants and other drugs.
Resumo:
The prescription information (summary of product characteristics, SPC) is compiled by the pharmaceutical industry as required by the national regulatory authorities. They vary in their content about the properties of drugs and about the usefulness of therapeutic drug monitoring (TDM) in the blood of patients. Based on a previous study carried out in Germany, the degree of agreement of French SPC for 59 psychotropic drugs with the existing medico-scientific evidence in the area of TDM was examined using a recently developed instrument. A summary score of SPC content (SPCC) related to TDM (SPCC(TDM)) has been calculated and compared with the level of recommendation of TDM of the AGNP-TDM expert group consensus guidelines for TDM in psychiatry [AGNP: Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (Association for neuropsychopharmacology and pharmacopsychiatry)]. Among the antidepressants, antipsychotics, tranquillizers/hypnotic agents and mood stabilizers, the highest SPCC(TDM) scores in the French SPC were reached for imipramine (16), haloperidol (6), clonazepam (8) and lithium (23), respectively. Results were similar to those obtained from the analysis of German SPC, and considerable disagreement was found between the information on TDM in SPC and existing medico-scientific evidence, albeit less in the case of mood stabilizers. Taking into account the recommendations of the AGNP-TDM expert group guidelines, there is a deficit in the French SPC concerning TDM-relevant information. An amelioration of this situation could help to improve the clinical practice of TDM of psychotropic drugs, as the SPC is a widely used tool.
Resumo:
Introduction: Therapeutic drug monitoring (TDM) aims at optimizing treatment by individualizing dosage regimen based on measurement of blood concentrations. Maintaining concentrations within a target range requires pharmacokinetic and clinical capabilities. Bayesian calculation represents a gold standard in TDM approach but requires computing assistance. In the last decades computer programs have been developed to assist clinicians in this assignment. The aim of this benchmarking was to assess and compare computer tools designed to support TDM clinical activities.¦Method: Literature and Internet search was performed to identify software. All programs were tested on common personal computer. Each program was scored against a standardized grid covering pharmacokinetic relevance, user-friendliness, computing aspects, interfacing, and storage. A weighting factor was applied to each criterion of the grid to consider its relative importance. To assess the robustness of the software, six representative clinical vignettes were also processed through all of them.¦Results: 12 software tools were identified, tested and ranked. It represents a comprehensive review of the available software's characteristics. Numbers of drugs handled vary widely and 8 programs offer the ability to the user to add its own drug model. 10 computer programs are able to compute Bayesian dosage adaptation based on a blood concentration (a posteriori adjustment) while 9 are also able to suggest a priori dosage regimen (prior to any blood concentration measurement), based on individual patient covariates, such as age, gender, weight. Among those applying Bayesian analysis, one uses the non-parametric approach. The top 2 software emerging from this benchmark are MwPharm and TCIWorks. Other programs evaluated have also a good potential but are less sophisticated (e.g. in terms of storage or report generation) or less user-friendly.¦Conclusion: Whereas 2 integrated programs are at the top of the ranked listed, such complex tools would possibly not fit all institutions, and each software tool must be regarded with respect to individual needs of hospitals or clinicians. Interest in computing tool to support therapeutic monitoring is still growing. Although developers put efforts into it the last years, there is still room for improvement, especially in terms of institutional information system interfacing, user-friendliness, capacity of data storage and report generation.
Resumo:
Purpose: While imatinib has revolutionized the treatment of chronic myeloid leukaemia (CML) and gastrointestinal stromal tumors (GIST), its pharmacokinetic-pharmacodynamic relationships have been poorly studied. This study aimed to explore the issue in oncologic patients, and to evaluate the specific influence of the target genotype in a GIST subpopulation. Patients and methods: Data from 59 patients (321 plasma samples) were collected during a previous pharmacokinetic study. Based on a population model purposely developed, individual post-hoc Bayesian estimates of pharmacokinetic parameters were derived, and used to estimate drug exposure (AUC; area under curve). Free fraction parameters were deduced from a model incorporating plasma alpha1-acid glycoprotein levels. Associations between AUC (or clearance) and therapeutic response (coded on a 3-point scale), or tolerability (4-point scale), were explored by ordered logistic regression. Influence of KIT genotype on response was also assessed in GIST patients. Results: Total and free drug exposure correlated with the number of side effects (p < 0.005). A relationship with response was not evident in the whole patient set (with good-responders tending to receive lower doses and bad-responders higher doses). In GIST patients however, higher free drug exposure predicted better responses. A strong association was notably observed in patients harboring an exon 9 mutation or a wild type KIT, known to decrease tumor sensitivity towards imatinib (p < 0.005). Conclusions: Our results are arguments to further evaluate the potential benefit of a therapeutic monitoring program for imatinib. Our data also suggest that stratification by genotype will be important in future trials.
Resumo:
Capillary electrophoresis has drawn considerable attention in the past few years, particularly in the field of chiral separations because of its high separation efficiency. However, its routine use in therapeutic drug monitoring is hampered by its low sensitivity due to a short optical path. We have developed a capillary zone electrophoresis (CZE) method using 2mM of hydroxypropyl-β-cyclodextrin as a chiral selector, which allows base-to-base separation of the enantiomers of mianserin (MIA), desmethylmianserin (DMIA), and 8-hydroxymianserin (OHMIA). Through the use of an on-column sample concentration step after liquid-liquid extraction from plasma and through the presence of an internal standard, the quantitation limits were found to be 5 ng/mL for each enantiomer of MIA and DMIA and 15 ng/mL for each enantiomer of OHMIA. To our knowledge, this is the first published CE method that allows its use for therapeutic monitoring of antidepressants due to its sensitivity down to the low nanogram range. The variability of the assays, as assessed by the coefficients of variation (CV) measured at two concentrations for each substance, ranged from 2 to 14% for the intraday (eight replicates) and from 5 to 14% for the interday (eight replicates) experiments. The deviations from the theoretical concentrations, which represent the accuracy of the method, were all within 12.5%. A linear response was obtained for all compounds within the range of concentrations used for the calibration curves (10-150 ng/mL for each enantiomer of MIA and DMIA and 20-300 ng/mL for each enantiomer of OHMIA). Good correlations were calculated between [(R) + (S)]-MIA and DMIA concentrations measured in plasma samples of 20 patients by a nonchiral gas chromatography method and CZE, and between the (R)- and (S)-concentrations of MIA and DMIA measured in plasma samples of 37 patients by a previously described chiral high-performance liquid chromatography method and CZE. Finally, no interference was noted from more than 20 other psychotropic drugs. Thus, this method, which is both sensitive and selective, can be routinely used for therapeutic monitoring of the enantiomers of MIA and its metabolites. It could be very useful due to the demonstrated interindividual variability of the stereoselective metabolism of MIA.
Resumo:
BACKGROUND: Pediatric intensive care patients represent a population at high risk for drug-related problems. There are few studies that compare the activity of clinical pharmacists between countries. OBJECTIVE: To describe the drug-related problems identified and interventions by four pharmacists in a pediatric cardiac and intensive care unit. SETTING: Four pediatric centers in France, Quebec, Switzerland and Belgium. METHOD: This was a six-month multicenter, descriptive and prospective study conducted from August 1, 2009 to January 31, 2010. Drug-related problems and clinical interventions were compiled from four pediatric centers in France, Quebec, Switzerland and Belgium. Data on patients, drugs, intervention, documentation, approval and estimated impact were compiled. MAIN OUTCOME MEASURE: Number and type of drug-related problems encountered in a large pediatric inpatient population. RESULTS: A total of 996 interventions were recorded: 238 (24 %) in France, 278 (28 %) in Quebec, 351 (35 %) in Switzerland and 129 (13 %) in Belgium. These interventions targeted 270 patients (median 21 months old, 53 % male): 88 (33 %) in France, 56 (21 %) in Quebec, 57 (21 %) in Switzerland and 69 (26 %) in Belgium. The main drug-related problems were inappropriate administration technique (29 %), untreated indication (25 %) and supra-therapeutic dose (11 %). The pharmacists' interventions were mostly optimizing the mode of administration (22 %), dose adjustment (20 %) and therapeutic monitoring (16 %). The two major drug classes that led to interventions were anti-infectives for systemic use (23 %) and digestive system and metabolism drugs (22 %). Interventions mainly involved residents and all clinical staff (21 %). Among the 878 (88 %) proposed interventions requiring physician approval, 860 (98 %) were accepted. CONCLUSION: This descriptive study illustrates drug-related problems and the ability of clinical pharmacists to identify and resolve them in pediatric intensive care units in four French-speaking countries.
Resumo:
For many drugs, finding the balance between efficacy and toxicity requires monitoring their concentrations in the patient's blood. Quantifying drug levels at the bedside or at home would have advantages in terms of therapeutic outcome and convenience, but current techniques require the setting of a diagnostic laboratory. We have developed semisynthetic bioluminescent sensors that permit precise measurements of drug concentrations in patient samples by spotting minimal volumes on paper and recording the signal using a simple point-and-shoot camera. Our sensors have a modular design consisting of a protein-based and a synthetic part and can be engineered to selectively recognize a wide range of drugs, including immunosuppressants, antiepileptics, anticancer agents and antiarrhythmics. This low-cost point-of-care method could make therapies safer, increase the convenience of doctors and patients and make therapeutic drug monitoring available in regions with poor infrastructure.
Resumo:
OBJECTIVE: Incomplete compliance is one of several possible causes of uncontrolled hypertension. Yet, non-compliance remains largely unrecognized and is falsely interpreted as treatment resistance, because it is difficult to confirm or exclude objectively. The goal of this study was to evaluate the potential benefits of electronic monitoring of drug compliance in the management of patients with resistant hypertension. METHODS: Forty-one hypertensive patients resistant to a three-drug regimen (average blood pressure 156/ 106 +/- 23/11 mmHg, mean +/- SD) were studied prospectively. They were informed that for the next 2 months, their presently prescribed drugs would be provided in electronic monitors, without any change in treatment, so as to provide the treating physician with a measure of their compliance. Thereafter, patients were offered the possibility of prolonging the monitoring of compliance for another 2 month period, during which treatment was adapted if necessary. RESULTS: Monitoring of compliance alone was associated with a significant improvement of blood pressure at 2 months (145/97 +/- 20/15 mmHg, P < 0.01). During monitoring, blood pressure was normalized (systolic < 140 mmHg or diastolic < 90 mmHg) in one-third of the patients and insufficient compliance was unmasked in another 20%. When analysed according to tertiles of compliance, patients with the lowest compliance exhibited significantly higher achieved diastolic blood pressures (P = 0.04). In 30 patients, compliance was monitored up to 4 months and drug therapy was adapted whenever necessary. In these patients, a further significant decrease in blood pressure was obtained (from 150/100 +/- 18/15 to 143/94 +/- 22/11 mmHg, P = 0.04/0.02). CONCLUSIONS: These results suggest that objective monitoring of compliance using electronic devices may be a useful step in the management of patients with refractory hypertension, as it enables physicians to take rational decisions based on reliable and objective data of drug compliance and hence to improve blood pressure control.
Resumo:
Therapeutic drug monitoring (TDM) aims to optimize treatments by individualizing dosage regimens based on the measurement of blood concentrations. Dosage individualization to maintain concentrations within a target range requires pharmacokinetic and clinical capabilities. Bayesian calculations currently represent the gold standard TDM approach but require computation assistance. In recent decades computer programs have been developed to assist clinicians in this assignment. The aim of this survey was to assess and compare computer tools designed to support TDM clinical activities. The literature and the Internet were searched to identify software. All programs were tested on personal computers. Each program was scored against a standardized grid covering pharmacokinetic relevance, user friendliness, computing aspects, interfacing and storage. A weighting factor was applied to each criterion of the grid to account for its relative importance. To assess the robustness of the software, six representative clinical vignettes were processed through each of them. Altogether, 12 software tools were identified, tested and ranked, representing a comprehensive review of the available software. Numbers of drugs handled by the software vary widely (from two to 180), and eight programs offer users the possibility of adding new drug models based on population pharmacokinetic analyses. Bayesian computation to predict dosage adaptation from blood concentration (a posteriori adjustment) is performed by ten tools, while nine are also able to propose a priori dosage regimens, based only on individual patient covariates such as age, sex and bodyweight. Among those applying Bayesian calculation, MM-USC*PACK© uses the non-parametric approach. The top two programs emerging from this benchmark were MwPharm© and TCIWorks. Most other programs evaluated had good potential while being less sophisticated or less user friendly. Programs vary in complexity and might not fit all healthcare settings. Each software tool must therefore be regarded with respect to the individual needs of hospitals or clinicians. Programs should be easy and fast for routine activities, including for non-experienced users. Computer-assisted TDM is gaining growing interest and should further improve, especially in terms of information system interfacing, user friendliness, data storage capability and report generation.
Resumo:
Matrix effects, which represent an important issue in liquid chromatography coupled to mass spectrometry or tandem mass spectrometry detection, should be closely assessed during method development. In the case of quantitative analysis, the use of stable isotope-labelled internal standard with physico-chemical properties and ionization behaviour similar to the analyte is recommended. In this paper, an example of the choice of a co-eluting deuterated internal standard to compensate for short-term and long-term matrix effect in the case of chiral (R,S)-methadone plasma quantification is reported. The method was fully validated over a concentration range of 5-800 ng/mL for each methadone enantiomer with satisfactory relative bias (-1.0 to 1.0%), repeatability (0.9-4.9%) and intermediate precision (1.4-12.0%). From the results obtained during validation, a control chart process during 52 series of routine analysis was established using both intermediate precision standard deviation and FDA acceptance criteria. The results of routine quality control samples were generally included in the +/-15% variability around the target value and mainly in the two standard deviation interval illustrating the long-term stability of the method. The intermediate precision variability estimated in method validation was found to be coherent with the routine use of the method. During this period, 257 trough concentration and 54 peak concentration plasma samples of patients undergoing (R,S)-methadone treatment were successfully analysed for routine therapeutic drug monitoring.
Resumo:
In 1995 the working group "Drug Monitoring" of the Swiss Society of Clinical Chemistry (SSCC) has already published a printed version of drug monographs, which are now newly compiled and presented in a standardised manner. The aim of these monographs is to give an overview on the most important informations that are necessary in order to request a drug analysis or is helpful to interpret the results. Therefore, the targeted audience are laboratory health professionals or the receivers of the reports. There is information provided on the indication for therapeutic drug monitoring, protein binding, metabolic pathways and enzymes involved, elimination half life time and elimination routes as well as information on therapeutic or toxic concentrations. Because preanalytical considerations are of particular importance for therapeutic drug monitoring, there is also information given at which time the determination of the drug concentration is reasonable and when steady-state concentrations are reached after changing the dose. Furthermore, the stability of the drug and its metabolite(s), respectively, after blood sampling is described. For readers with a specific interest, references to important publications are given. The number of the monographs will be continuously enlarged. The updated files are presented on the homepage of the SSCC (www.sscc.ch).
Resumo:
Most anticancer drugs are characterised by a steep dose-response relationship and narrow therapeutic window. Inter-individual pharmacokinetic (PK) variability is often substantial. The most relevant PK parameter for cytotoxic drugs is the area under the plasma concentration versus time curve (AUC). Thus it is somewhat surprising that therapeutic drug monitoring (TDM) is still uncommon for the majority of agents. Goals of the review were to assess the rationale for more widely used TDM of cytotoxics in oncology. There are several reasons why TDM has never been fully implemented into daily oncology practice. These include difficulties in establishing appropriate concentration target ranges, common use of combination chemotherapies for many tumour types, analytical challenges with prodrugs, intracellular compounds, the paucity of published data from pharmacological trials and 'Day1=Day21' administration schedules. There are some specific situations for which these limitations are overcome, including high dose methotrexate, 5-fluorouracil infusion, mitotane and some high dose chemotherapy regimens. TDM in paediatric oncology represents an important challenge. Established TDM approaches includes the widely used anticancer agents carboplatin, busulfan and methotrexate, with 13-cis-retinoic acid also recently of interest. Considerable effort should be made to better define concentration-effect relationships and to utilise tools such as population PK/PD models and comparative randomised trials of classic dosing versus pharmacokinetically guided adaptive dosing. There is an important heterogeneity among clinical practices and a strong need to promote TDM guidelines among the oncological community.