29 resultados para themal analytical
em Université de Lausanne, Switzerland
Resumo:
Drug abuse is a widespread problem affecting both teenagers and adults. Nitrous oxide is becoming increasingly popular as an inhalation drug, causing harmful neurological and hematological effects. Some gas chromatography-mass spectrometry (GC-MS) methods for nitrous oxide measurement have been previously described. The main drawbacks of these methods include a lack of sensitivity for forensic applications; including an inability to quantitatively determine the concentration of gas present. The following study provides a validated method using HS-GC-MS which incorporates hydrogen sulfide as a suitable internal standard allowing the quantification of nitrous oxide. Upon analysis, sample and internal standard have similar retention times and are eluted quickly from the molecular sieve 5Å PLOT capillary column and the Porabond Q column therefore providing rapid data collection whilst preserving well defined peaks. After validation, the method has been applied to a real case of N2O intoxication indicating concentrations in a mono-intoxication.
Resumo:
Matrix effects, which represent an important issue in liquid chromatography coupled to mass spectrometry or tandem mass spectrometry detection, should be closely assessed during method development. In the case of quantitative analysis, the use of stable isotope-labelled internal standard with physico-chemical properties and ionization behaviour similar to the analyte is recommended. In this paper, an example of the choice of a co-eluting deuterated internal standard to compensate for short-term and long-term matrix effect in the case of chiral (R,S)-methadone plasma quantification is reported. The method was fully validated over a concentration range of 5-800 ng/mL for each methadone enantiomer with satisfactory relative bias (-1.0 to 1.0%), repeatability (0.9-4.9%) and intermediate precision (1.4-12.0%). From the results obtained during validation, a control chart process during 52 series of routine analysis was established using both intermediate precision standard deviation and FDA acceptance criteria. The results of routine quality control samples were generally included in the +/-15% variability around the target value and mainly in the two standard deviation interval illustrating the long-term stability of the method. The intermediate precision variability estimated in method validation was found to be coherent with the routine use of the method. During this period, 257 trough concentration and 54 peak concentration plasma samples of patients undergoing (R,S)-methadone treatment were successfully analysed for routine therapeutic drug monitoring.
Resumo:
Background: Distinguishing postmortem gas accumulations in the body due to natural decomposition and other phenomena such as gas embolism can prove a difficult task using purely Multi-Detector Computed Tomography (MDCT). The Radiological Alteration Index (RAI) was created with the intention to be able to identify bodies undergoing the putrefaction process based on the quantity of gas detected within the body. The flaw in this approach is the inability to absolutely determine putrefaction as the origin of gas volumes in cases of moderate alteration. The aim of the current study is to identify percentage compositions of O2, N2, CO2 and the presence of gases such as H2 and H2S within these sampling sites in order to resolve this complication. Materials and methods: All cases investigated in our University Center of Legal Medicine are undergoing a Post-Mortem Computed Tomography (PMCT)-scan before external examination or autopsy as a routine investigation. In the obtained images, areas of gas were characterized as 0, I, II or III based on the amount of gas present according to the RAI (1). The criteria for these characterizations were dependent of the site of gas, for example thoracic and abdominal cavities were graded as I (1 - 3cm gas), II (3 - 5cm gas) and III (>5cm gas). Cases showing gaseous sites with grade II or III were selected for this study. The sampling was performed under CT-guidance to target the regions to be punctured. Luer-lock PTFE syringes equipped with a three-way valve and needles were used to sample the gas directly (2). Gaseous samples were then analysed using gas chromatography coupled to a thermal conductivity detector (GC-TCD). The components present in the samples were expressed as a percentage of the overall gas present. Results: Up to now, we have investigated more than 40 cases using our standardized procedure for sampling and analysis of gas. O2, N2 and CO2 were present in most samples. The following distributions were found to correlate to gas origins of gas embolism/scuba diving accidents, trauma and putrefaction: ? Putrefaction → O2 = 1 - 5%; CO2 > 15%; N2 = 10 - 70%; H2 / H2S / CH4 variable presence ? Gas embolism/Scuba diving accidents → O2 and N2= varying percentages; CO2 > 20% ? Trauma → O2 = small percentage; CO2 < 15%; N2 > 65% H2 and H2S indicated levels of putrefaction along with methane which can also gauge environmental conditions or conditions of body storage/burial. Many cases showing large RAI values (advanced alteration) did reveal a radiological diagnosis which was in concordance with the interpretation of the gas composition. However, in certain cases (gas embolism, scuba divers) radiological interpretation was not possible and only chemical gas analysis was found to lead to the correct diagnosis, meaning that it provided complementary information to the radiological diagnosis. Conclusion: Investigation of postmortem gases is a useful tool to determine origin of gas generation which can aid the diagnosis of the cause of death. Levels of gas can provide information on stage of putrefaction and help to perform essential medico-legal diagnosis such as vital gas embolism.
Resumo:
Forensic scientists have long detected the presence of drugs and their metabolites in biological materials using body fluids such as urine, blood and/or other biological liquids or tissues. For doping analysis, only urine has so far been collected. In recent years, remarkable advances in sensitive analytical techniques have encouraged the analysis of drugs in unconventional biological samples such as hair, saliva and sweat. These samples are easily collected, although drug levels are often lower than the corresponding levels in urine or blood. This chapter reviews recent studies in the detection of doping agents in hair, saliva and sweat. Sampling, analytical procedures and interpretation of the results are discussed in comparison with those obtained from urine and blood samples.
Resumo:
The trabecular bone score (TBS) is a gray-level textural metric that can be extracted from the two-dimensional lumbar spine dual-energy X-ray absorptiometry (DXA) image. TBS is related to bone microarchitecture and provides skeletal information that is not captured from the standard bone mineral density (BMD) measurement. Based on experimental variograms of the projected DXA image, TBS has the potential to discern differences between DXA scans that show similar BMD measurements. An elevated TBS value correlates with better skeletal microstructure; a low TBS value correlates with weaker skeletal microstructure. Lumbar spine TBS has been evaluated in cross-sectional and longitudinal studies. The following conclusions are based upon publications reviewed in this article: 1) TBS gives lower values in postmenopausal women and in men with previous fragility fractures than their nonfractured counterparts; 2) TBS is complementary to data available by lumbar spine DXA measurements; 3) TBS results are lower in women who have sustained a fragility fracture but in whom DXA does not indicate osteoporosis or even osteopenia; 4) TBS predicts fracture risk as well as lumbar spine BMD measurements in postmenopausal women; 5) efficacious therapies for osteoporosis differ in the extent to which they influence the TBS; 6) TBS is associated with fracture risk in individuals with conditions related to reduced bone mass or bone quality. Based on these data, lumbar spine TBS holds promise as an emerging technology that could well become a valuable clinical tool in the diagnosis of osteoporosis and in fracture risk assessment. © 2014 American Society for Bone and Mineral Research.
Resumo:
Lymphocytic choriomeningitis virus (LCMV) is a rare cause of central nervous system disease in humans. Screening by real-time RT-PCR assay is of interest in the case of aseptic meningitis of unknown etiology. A specific LCMV real-time RT-PCR assay, based on the detection of genomic sequences of the viral nucleoprotein (NP), was developed to assess the presence of LCMV in cerebrospinal fluids (CSF) sent for viral screening to a Swiss university hospital laboratory. A 10-fold dilution series assay using a plasmid containing the cDNA of the viral NP of the LCMV isolate Armstrong (Arm) 53b demonstrated the high sensitivity of the assay with a lowest detection limit of ≤50 copies per reaction. High sensitivity was confirmed by dilution series assays in a pool of human CSF using four different LCMV isolates (Arm53b, WE54, Traub and E350) with observed detection limits of ≤10PFU/ml (Arm53b and WE54) and 1PFU/ml (Traub and E350). Analysis of 130 CSF showed no cases of acute infection. The absence of positive cases was confirmed by a published PCR assay detecting all Old World arenaviruses. This study validates a specific and sensitive real-time RT-PCR assay for the diagnosis of LCMV infections. Results showed that LCMV infections are extremely rare in hospitalized patients western in Switzerland.
Resumo:
Analytical results harmonisation is investigated in this study to provide an alternative to the restrictive approach of analytical methods harmonisation which is recommended nowadays for making possible the exchange of information and then for supporting the fight against illicit drugs trafficking. Indeed, the main goal of this study is to demonstrate that a common database can be fed by a range of different analytical methods, whatever the differences in levels of analytical parameters between these latter ones. For this purpose, a methodology making possible the estimation and even the optimisation of results similarity coming from different analytical methods was then developed. In particular, the possibility to introduce chemical profiles obtained with Fast GC-FID in a GC-MS database is studied in this paper. By the use of the methodology, the similarity of results coming from different analytical methods can be objectively assessed and the utility in practice of database sharing by these methods can be evaluated, depending on profiling purposes (evidential vs. operational perspective tool). This methodology can be regarded as a relevant approach for database feeding by different analytical methods and puts in doubt the necessity to analyse all illicit drugs seizures in one single laboratory or to implement analytical methods harmonisation in each participating laboratory.
Resumo:
The trabecular bone score (TBS) is a gray-level textural metric that can be extracted from the two-dimensional lumbar spine dual-energy X-ray absorptiometry (DXA) image. TBS is related to bone microarchitecture and provides skeletal information that is not captured from the standard bone mineral density (BMD) measurement. Based on experimental variograms of the projected DXA image, TBS has the potential to discern differences between DXA scans that show similar BMD measurements. An elevated TBS value correlates with better skeletal microstructure; a low TBS value correlates with weaker skeletal microstructure. Lumbar spine TBS has been evaluated in cross-sectional and longitudinal studies. The following conclusions are based upon publications reviewed in this article: 1) TBS gives lower values in postmenopausal women and in men with previous fragility fractures than their nonfractured counterparts; 2) TBS is complementary to data available by lumbar spine DXA measurements; 3) TBS results are lower in women who have sustained a fragility fracture but in whom DXA does not indicate osteoporosis or even osteopenia; 4) TBS predicts fracture risk as well as lumbar spine BMD measurements in postmenopausal women; 5) efficacious therapies for osteoporosis differ in the extent to which they influence the TBS; 6) TBS is associated with fracture risk in individuals with conditions related to reduced bone mass or bone quality. Based on these data, lumbar spine TBS holds promise as an emerging technology that could well become a valuable clinical tool in the diagnosis of osteoporosis and in fracture risk assessment.
Resumo:
Microparticles are phospholipid vesicles shed mostly in biological fluids, such as blood or urine, by various types of cells, such as red blood cells (RBCs), platelets, lymphocytes, endothelial cells. These microparticles contain a subset of the proteome of their parent cell, and their ready availability in biological fluid has raised strong interest in their study, as they might be markers of cell damage. However, their small size as well as their particular physico-chemical properties makes them hard to detect, size, count and study by proteome analysis. In this review, we report the pre-analytical and methodological caveats that we have faced in our own research about red blood cell microparticles in the context of transfusion science, as well as examples from the literature on the proteomics of various kinds of microparticles.
Resumo:
The educational sphere has an internal function relatively agreed by social scientists. Nonetheless, the contribution that educational systems provide to the society (i.e., their social function) does not have the same degree of consensus. Taking into consideration such theoretical precedent, the current article raises an analytical schema to grasp the social function of education considering a sociological perspective. Starting from the assumption that there is an intrinsic relationship between the internal and social functions of social systems, we suggest there are particular stratification determinants modifying the internal pedagogical function of education, which impact on its social function by creating simultaneous conditions of equity and differentiation. Throughout the paper this social function is considered a paradoxical mechanism. We highlight how this paradoxical dynamic is deployed in different structural levels of the educational sphere. Additionally, we discuss eventual consequences of this paradoxical social function for the inclusion possibilities that educational systems offer to individuals.
Resumo:
Since the first anti-doping tests in the 1960s, the analytical aspects of the testing remain challenging. The evolution of the analytical process in doping control is discussed in this paper with a particular emphasis on separation techniques, such as gas chromatography and liquid chromatography. These approaches are improving in parallel with the requirements of increasing sensitivity and selectivity for detecting prohibited substances in biological samples from athletes. Moreover, fast analyses are mandatory to deal with the growing number of doping control samples and the short response time required during particular sport events. Recent developments in mass spectrometry and the expansion of accurate mass determination has improved anti-doping strategies with the possibility of using elemental composition and isotope patterns for structural identification. These techniques must be able to distinguish equivocally between negative and suspicious samples with no false-negative or false-positive results. Therefore, high degree of reliability must be reached for the identification of major metabolites corresponding to suspected analytes. Along with current trends in pharmaceutical industry the analysis of proteins and peptides remains an important issue in doping control. Sophisticated analytical tools are still mandatory to improve their distinction from endogenous analogs. Finally, indirect approaches will be discussed in the context of anti-doping, in which recent advances are aimed to examine the biological response of a doping agent in a holistic way.
Resumo:
Biological markers for the status of vitamins B12 and D: the importance of some analytical aspects in relation to clinical interpretation of results When vitamin B12 deficiency is expressed clinically, the diagnostic performance of total cobalamin is identical to that of holotranscobalamin II. In subclinical B12 deficiency, the two aforementioned markers perform less well. Additional analysis of a second, functional marker (methylmalonate or homocysteine) is recommended. Different analytical approaches for 25-hydroxyvitamin D quantification, the marker of vitamin D deficiency, are not yet standardized. Measurement biases of up to +/- 20% compared with the original method used to establish threshold values are still observed.