20 resultados para technology acceptance model
em Université de Lausanne, Switzerland
Resumo:
While mobile technologies can provide great personalized services for mobile users, they also threaten their privacy. Such personalization-privacy paradox are particularly salient for context aware technology based mobile applications where user's behaviors, movement and habits can be associated with a consumer's personal identity. In this thesis, I studied the privacy issues in the mobile context, particularly focus on an adaptive privacy management system design for context-aware mobile devices, and explore the role of personalization and control over user's personal data. This allowed me to make multiple contributions, both theoretical and practical. In the theoretical world, I propose and prototype an adaptive Single-Sign On solution that use user's context information to protect user's private information for smartphone. To validate this solution, I first proved that user's context is a unique user identifier and context awareness technology can increase user's perceived ease of use of the system and service provider's authentication security. I then followed a design science research paradigm and implemented this solution into a mobile application called "Privacy Manager". I evaluated the utility by several focus group interviews, and overall the proposed solution fulfilled the expected function and users expressed their intentions to use this application. To better understand the personalization-privacy paradox, I built on the theoretical foundations of privacy calculus and technology acceptance model to conceptualize the theory of users' mobile privacy management. I also examined the role of personalization and control ability on my model and how these two elements interact with privacy calculus and mobile technology model. In the practical realm, this thesis contributes to the understanding of the tradeoff between the benefit of personalized services and user's privacy concerns it may cause. By pointing out new opportunities to rethink how user's context information can protect private data, it also suggests new elements for privacy related business models.
Resumo:
The development of model observers for mimicking human detection strategies has followed from symmetric signals in simple noise to increasingly complex backgrounds. In this study we implement different model observers for the complex task of detecting a signal in a 3D image stack. The backgrounds come from real breast tomosynthesis acquisitions and the signals were simulated and reconstructed within the volume. Two different tasks relevant to the early detection of breast cancer were considered: detecting an 8 mm mass and detecting a cluster of microcalcifications. The model observers were calculated using a channelized Hotelling observer (CHO) with dense difference-of-Gaussian channels, and a modified (Partial prewhitening [PPW]) observer which was adapted to realistic signals which are not circularly symmetric. The sustained temporal sensitivity function was used to filter the images before applying the spatial templates. For a frame rate of five frames per second, the only CHO that we calculated performed worse than the humans in a 4-AFC experiment. The other observers were variations of PPW and outperformed human observers in every single case. This initial frame rate was a rather low speed and the temporal filtering did not affect the results compared to a data set with no human temporal effects taken into account. We subsequently investigated two higher speeds at 5, 15 and 30 frames per second. We observed that for large masses, the two types of model observers investigated outperformed the human observers and would be suitable with the appropriate addition of internal noise. However, for microcalcifications both only the PPW observer consistently outperformed the humans. The study demonstrated the possibility of using a model observer which takes into account the temporal effects of scrolling through an image stack while being able to effectively detect a range of mass sizes and distributions.
Resumo:
BACKGROUND/AIMS: The present report examines a new pig model for progressive induction of high-grade stenosis, for the study of chronic myocardial ischemia and the dynamics of collateral vessel growth. METHODS: Thirty-nine Landrace pigs were instrumented with a novel experimental stent (GVD stent) in the left anterior descending coronary artery. Eight animals underwent transthoracic echocardiography at rest and under low-dose dobutamine. Seven animals were examined by nuclear PET and SPECT analysis. Epi-, mid- and endocardial fibrosis and the numbers of arterial vessels were examined by histology. RESULTS: Functional analysis showed a significant decrease in global left ventricular ejection fraction (24.5 +/- 1.6%) 3 weeks after implantation. There was a trend to increased left ventricular ejection fraction after low-dose dobutamine stress (36.0 +/- 6.6%) and a significant improvement of the impaired regional anterior wall motion. PET and SPECT imaging documented chronic hibernation. Myocardial fibrosis increased significantly in the ischemic area with a gradient from epi- to endocardial. The number of arterial vessels in the ischemic area increased and coronary angiography showed abundant collateral vessels of Rentrop class 1. CONCLUSION: The presented experimental model mimics the clinical situation of chronic myocardial ischemia secondary to 1-vessel coronary disease.
Resumo:
The determination of characteristic cardiac parameters, such as displacement, stress and strain distribution are essential for an understanding of the mechanics of the heart. The calculation of these parameters has been limited until recently by the use of idealised mathematical representations of biventricular geometries and by applying simple material laws. On the basis of 20 short axis heart slices and in consideration of linear and nonlinear material behaviour we have developed a FE model with about 100,000 degrees of freedom. Marching Cubes and Phong's incremental shading technique were used to visualise the three dimensional geometry. In a quasistatic FE analysis continuous distribution of regional stress and strain corresponding to the endsystolic state were calculated. Substantial regional variation of the Von Mises stress and the total strain energy were observed at all levels of the heart model. The results of both the linear elastic model and the model with a nonlinear material description (Mooney-Rivlin) were compared. While the stress distribution and peak stress values were found to be comparable, the displacement vectors obtained with the nonlinear model were generally higher in comparison with the linear elastic case indicating the need to include nonlinear effects.
Resumo:
A sound statistical methodology is presented for modelling the correspondence between the characteristics of individuals, their thermal environment, and their thermal sensation. The proposed methodology substantially improves that developed by P.O. Fanger, by formulating a more general and precise model of thermal comfort. It enables us to estimate the model from a sample of data where all the parameters of comfort vary at the same time, which is not possible with that adopted by Fanger. Moreover, the present model is still valid when thermal conditions are far from optimum. (C) 1997 Elsevier Science Ltd.
Resumo:
1 6 STRUCTURE OF THIS THESIS -Chapter I presents the motivations of this dissertation by illustrating two gaps in the current body of knowledge that are worth filling, describes the research problem addressed by this thesis and presents the research methodology used to achieve this goal. -Chapter 2 shows a review of the existing literature showing that environment analysis is a vital strategic task, that it shall be supported by adapted information systems, and that there is thus a need for developing a conceptual model of the environment that provides a reference framework for better integrating the various existing methods and a more formal definition of the various aspect to support the development of suitable tools. -Chapter 3 proposes a conceptual model that specifies the various enviromnental aspects that are relevant for strategic decision making, how they relate to each other, and ,defines them in a more formal way that is more suited for information systems development. -Chapter 4 is dedicated to the evaluation of the proposed model on the basis of its application to a concrete environment to evaluate its suitability to describe the current conditions and potential evolution of a real environment and get an idea of its usefulness. -Chapter 5 goes a step further by assembling a toolbox describing a set of methods that can be used to analyze the various environmental aspects put forward by the model and by providing more detailed specifications for a number of them to show how our model can be used to facilitate their implementation as software tools. -Chapter 6 describes a prototype of a strategic decision support tool that allow the analysis of some of the aspects of the environment that are not well supported by existing tools and namely to analyze the relationship between multiple actors and issues. The usefulness of this prototype is evaluated on the basis of its application to a concrete environment. -Chapter 7 finally concludes this thesis by making a summary of its various contributions and by proposing further interesting research directions.
Resumo:
To achieve the goal of sustained donor-specifi c transplantation (Tx) tolerance, research efforts are now focusing on therapies based on specifi c cell subsets with regulatory properties. We and others have previously highlighted the therapeutic potential of naturally occurring CD4+CD25+Foxp3+ regulatory T cells (nTreg) in promoting long-term graft acceptance. Using more stringent experimental Tx models, we were however confronted to limitations. Indeed, while the transfer of antigenspecifi c nTreg promoted long-term MHC-mismatched skin allograft acceptance in lymphopenic mice in the absence of any immunosuppressive drug, allograft survival was only slightly prolonged when nTreg were transferred alone into non-lymphopenic mice. This suggested that in more stringent conditions, adjuvant therapies may be needed to effectively control alloreactive T cells (Teff). Whether and how the expansion of the Treg pool could be best combined with current immunosuppressive regimens in clinical settings remains to be defi ned. In this study, we have used in vitro assays and an in vivo skin Tx model to investigate the effects of various immunosuppressive drugs on the survival, proliferation and effector function of Teff and nTreg in response to alloantigens. Teff proliferation was inhibited in a dose-dependent manner by rapamycin and cyclosporine A, while anti-CD154 mAb only marginally affected Teff survival, proliferation and effector fucntion in vitro. Rapamycin promoted apoptosis of Teff as compared to nTreg that were more resistant in the presence of IL-2. In vivo, the transfer and/or expansion of Treg could be advantageously combined with rapamycin and anti-CD154 mAb treatment to signifi cantly prolong MHC-mismatched skin allografts survival in non-lymphopenic recipients. Taken together our data indicate that immunosuppressive drugs differentially target T-cell subsets and that some regimens could promote Treg expansion while controlling the Teff pool in response to alloantigens.
Resumo:
Technology (i.e. tools, methods of cultivation and domestication, systems of construction and appropriation, machines) has increased the vital rates of humans, and is one of the defining features of the transition from Malthusian ecological stagnation to a potentially perpetual rising population growth. Maladaptations, on the other hand, encompass behaviours, customs and practices that decrease the vital rates of individuals. Technology and maladaptations are part of the total stock of culture carried by the individuals in a population. Here, we develop a quantitative model for the coevolution of cumulative adaptive technology and maladaptive culture in a 'producer-scrounger' game, which can also usefully be interpreted as an 'individual-social' learner interaction. Producers (individual learners) are assumed to invent new adaptations and maladaptations by trial-and-error learning, insight or deduction, and they pay the cost of innovation. Scroungers (social learners) are assumed to copy or imitate (cultural transmission) both the adaptations and maladaptations generated by producers. We show that the coevolutionary dynamics of producers and scroungers in the presence of cultural transmission can have a variety of effects on population carrying capacity. From stable polymorphism, where scroungers bring an advantage to the population (increase in carrying capacity), to periodic cycling, where scroungers decrease carrying capacity, we find that selection-driven cultural innovation and transmission may send a population on the path of indefinite growth or to extinction.
Resumo:
AIMS: Experimental models have reported conflicting results regarding the role of dispersion of repolarization in promoting atrial fibrillation (AF). Repolarization alternans, a beat-to-beat alternation in action potential duration, enhances dispersion of repolarization when propagation velocity is involved. METHODS AND RESULTS: In this work, original electrophysiological parameters were analysed to study AF susceptibility in a chronic sheep model of pacing-induced AF. Two pacemakers were implanted, each with a single right atrial lead. Right atrial depolarization and repolarization waves were documented at 2-week intervals. A significant and gradual decrease in the propagation velocity at all pacing rates and in the right atrial effective refractory period (ERP) was observed during the weeks of burst pacing before sustained AF developed when compared with baseline conditions. Right atrial repolarization alternans was observed, but because of the development of 2/1 atrioventricular block with far-field ventricular interference, its threshold could not be precisely measured. Non-sustained AF was not observed at baseline, but appeared during the electrical remodelling in association with a decrease in both ERP and propagation velocity. CONCLUSION: We report here on the feasibility of measuring ERP, atrial repolarization alternans, and propagation velocity kinetics and their potential in predicting susceptibility to AF in a free-behaving model of pacing-induced AF using the standard pacemaker technology.
Resumo:
BACKGROUND: A device to perform sutureless end-to-side coronary artery anastomosis has been developed by means of stent technology (GraftConnector). The present study assesses the long-term quality of the GraftConnector anastomosis in a sheep model. METHODS: In 8 adult sheep, 40-55 kg in weight, through left anterior thoracotomy, the right internal mammary artery (RIMA) was prepared and connected to the left anterior descending artery (LAD) by means of GraftConnector, on beating heart, without using any stabilizer. Ticlopidine 250 mg/day for anticoagulation for 4 weeks and Aspirin 100 mg/day for 6 months were given. The animals were sacrificed after 6 months and histological examination of anastomoses was carried out after slicing with the connector in situ for morphological analysis. RESULTS: All animals survived at 6 months. All anastomoses were patent and mean luminal width at histology was 1.8 +/- 0.2 mm; mean myotomia hyperplasia thickness was 0.21 +/- 0.1 mm. CONCLUSIONS: Long-term results demonstrate that OPCABGs performed with GraftConnector had 100% patency rate. The mean anastomotic luminal width corresponds to mean LAD's adult sheep diameter. We may speculate that myotomia hyperplasia occurred as a result of local device oversizing.
Resumo:
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by an expansion of CAG repeats in the huntingtin (Htt) gene. Despite intensive efforts devoted to investigating the mechanisms of its pathogenesis, effective treatments for this devastating disease remain unavailable. The lack of suitable models recapitulating the entire spectrum of the degenerative process has severely hindered the identification and validation of therapeutic strategies. The discovery that the degeneration in HD is caused by a mutation in a single gene has offered new opportunities to develop experimental models of HD, ranging from in vitro models to transgenic primates. However, recent advances in viral-vector technology provide promising alternatives based on the direct transfer of genes to selected sub-regions of the brain. Rodent studies have shown that overexpression of mutant human Htt in the striatum using adeno-associated virus or lentivirus vectors induces progressive neurodegeneration, which resembles that seen in HD. This article highlights progress made in modeling HD using viral vector gene transfer. We describe data obtained with of this highly flexible approach for the targeted overexpression of a disease-causing gene. The ability to deliver mutant Htt to specific tissues has opened pathological processes to experimental analysis and allowed targeted therapeutic development in rodent and primate pre-clinical models.
Resumo:
Large animal models are an important resource for the understanding of human disease and for evaluating the applicability of new therapies to human patients. For many diseases, such as cone dystrophy, research effort is hampered by the lack of such models. Lentiviral transgenesis is a methodology broadly applicable to animals from many different species. When conjugated to the expression of a dominant mutant protein, this technology offers an attractive approach to generate new large animal models in a heterogeneous background. We adopted this strategy to mimic the phenotype diversity encounter in humans and generate a cohort of pigs for cone dystrophy by expressing a dominant mutant allele of the guanylate cyclase 2D (GUCY2D) gene. Sixty percent of the piglets were transgenic, with mutant GUCY2D mRNA detected in the retina of all animals tested. Functional impairment of vision was observed among the transgenic pigs at 3 months of age, with a follow-up at 1 year indicating a subsequent slower progression of phenotype. Abnormal retina morphology, notably among the cone photoreceptor cell population, was observed exclusively amongst the transgenic animals. Of particular note, these transgenic animals were characterized by a range in the severity of the phenotype, reflecting the human clinical situation. We demonstrate that a transgenic approach using lentiviral vectors offers a powerful tool for large animal model development. Not only is the efficiency of transgenesis higher than conventional transgenic methodology but this technique also produces a heterogeneous cohort of transgenic animals that mimics the genetic variation encountered in human patients.
Resumo:
It has been shown that repolarization alternans, a beat-to-beat alternation in action potential duration, enhances dispersion of repolarization above a critical heart rate and promotes susceptibility to ventricular arrhythmias. It is unknown whether repolarization alternans is measurable in the atria using standard pacemakers and whether it plays a role in promoting atrial fibrillation. In this work, atrial repolarization alternans amplitude and periodicity are studied in a sheep model of pacing-induced atrial fibrillation. Two pacemakers, each with one right atrial and ventricular lead, were implanted in 4 male sheep after ablation of the atrioventricular junction. The first one was used to deliver rapid pacing for measurements of right atrial repolarization alternans and the second one to record a unipolar electrogram. Atrial repolarization alternans appeared rate-dependent and its amplitude increased as a function of pacing rate. Repolarization alternans was intermittent but no periodicity was detected. An increase of repolarization alternans preceding episodes of non-sustained atrial fibrillation suggests that repolarization alternans is a promising parameter for assessment of atrial fibrillation susceptibility.