57 resultados para systemic arterial stiffness

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Age is the main clinical determinant of large artery stiffness. Central arteries stiffen progressively with age, whereas peripheral muscular arteries change little with age. A number of clinical studies have analyzed the effects of age on aortic stiffness. Increase of central artery stiffness with age is responsible for earlier wave reflections and changes in pressure wave contours. The stiffening of aorta and other central arteries is a potential risk factor for increased cardiovascular morbidity and mortality. Arterial stiffening with aging is accompanied by an elevation in systolic blood pressure (BP) and pulse pressure (PP). Although arterial stiffening with age is a common situation, it has now been confirmed that older subjects with increased arterial stiffness and elevated PP have higher cardiovascular morbidity and mortality. Increase in aortic stiffness with age occurs gradually and continuously, similarly for men and women. Cross-sectional studies have shown that aortic and carotid stiffness (evaluated by the pulse wave velocity) increase with age by approximately 10% to 15% during a period of 10 years. Women always have 5% to 10% lower stiffness than men of the same age. Although large artery stiffness increases with age independently of the presence of cardiovascular risk factors or other associated conditions, the extent of this increase may depend on several environmental or genetic factors. Hypertension may increase arterial stiffness, especially in older subjects. Among other cardiovascular risk factors, diabetes type 1 and 2 accelerates arterial stiffness, whereas the role of dyslipidemia and tobacco smoking is unclear. Arterial stiffness is also present in several cardiovascular and renal diseases. Patients with heart failure, end stage renal disease, and those with atherosclerotic lesions often develop central artery stiffness. Decreased carotid distensibility, increased arterial thickness, and presence of calcifications and plaques often coexist in the same subject. However, relationships between these three alterations of the arterial wall remain to be explored.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To evaluate the impact of body position on the arterial stiffness indices provided by radial applanation tonometry in pregnant and nonpregnant women. METHODS: Twenty-four young women (18-30 years) in the third trimester of a normal pregnancy and 20 healthy nonpregnant women of the same age were enrolled. In each, applanation tonometry was carried out in the sitting and supine position. The following stiffness indices were analyzed: systolic augmentation index (sAix), sAix adjusted for heart rate (sAix@75) and diastolic augmentation index (dAix), all expressed in % of central aortic pulse pressure. RESULTS: The sAix was apparently not influenced by body position, but the transition from seated to supine was associated with a substantial decrease in heart rate. When correcting for this confounder by calculating the sAix@75, systolic augmentation was substantially lower when individuals were supine (mean ± SD: nonpregnant 3.0 ± 14.4%, pregnant 8.8 ± 9.7%) than when they were sitting (nonpregnant 5.7 ± 13.0%, pregnant 11.1 ± 83%, P = 0.005 supine vs. seated in both study groups, P > 0.2 for pregnant vs. nonpregnant). The influence of body position on the dAix went in the opposite direction (supine: nonpregnant 9.7 ± 6.6%, pregnant 4.4 ± 3.5%; seated: nonpregnant 7.7 ± 5.8%, pregnant 3.3 ± 2.4%, P < 0.00001 supine vs. seated in both study groups, P = 0.001 for pregnant vs. nonpregnant). CONCLUSION: Body position has a major impact on the pattern of central aortic pressure augmentation by reflected waves in healthy young women examined either during third trimester pregnancy or in the nonpregnant state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pulse-wave velocity (PWV) is considered as the gold-standard method to assess arterial stiffness, an independent predictor of cardiovascular morbidity and mortality. Current available devices that measure PWV need to be operated by skilled medical staff, thus, reducing the potential use of PWV in the ambulatory setting. In this paper, we present a new technique allowing continuous, unsupervised measurements of pulse transit times (PTT) in central arteries by means of a chest sensor. This technique relies on measuring the propagation time of pressure pulses from their genesis in the left ventricle to their later arrival at the cutaneous vasculature on the sternum. Combined thoracic impedance cardiography and phonocardiography are used to detect the opening of the aortic valve, from which a pre-ejection period (PEP) value is estimated. Multichannel reflective photoplethysmography at the sternum is used to detect the distal pulse-arrival time (PAT). A PTT value is then calculated as PTT = PAT - PEP. After optimizing the parameters of the chest PTT calculation algorithm on a nine-subject cohort, a prospective validation study involving 31 normo- and hypertensive subjects was performed. 1/chest PTT correlated very well with the COMPLIOR carotid to femoral PWV (r = 0.88, p < 10 (-9)). Finally, an empirical method to map chest PTT values onto chest PWV values is explored.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pendant la grossesse, la pression artérielle reste stable malgré une nette augmentation du volume d'éjection systolique et du débit cardiaque. Cette stabilité vient d'un côté d'une vasodilatation périphérique entraînant une diminution des résistances périphériques et d'un autre côté d'une moindre rigidité des principales artères notamment l'aorte. En conséquence, l'amplitude des ondes de pouls est atténuée, de même que leur vitesse de propagation dans le sens tant antérogade que rétrograde (ondes réfléchies). Les ondes réfléchies tendent ainsi à atteindre l'aorte ascendante plus tard durant la systole, voire durant la diastole, ce qui peut contribuer à diminuer la pression puisée. La prééclampsie perturbe massivement ce processus d'adaptation. Il s'agit d'une maladie hypertensive de la grossesse engendrant une importante morbidité et mortalité néonatale et maternelle. Il est à remarquer que la diminution de la rigidité artérielle n'est pas observée chez les patientes atteintes avec pour conséquence une forte augmentation de la pression systolique centrale (aortique) par les ondes réfléchies. Ce fait a été établi grâce à l'existence de la tonométrie d'aplanation, une méthode permettant l'évaluation non invasive de l'onde de pouls centrale. Dans cette méthode, un senseur de pression piézo-électrique permet de capter l'onde de pouls périphérique, le plus souvent sur l'artère radiale. Par la suite, un algorithme validé permet d'en déduire la forme de l'onde de pouls centrale et de visualiser à quel moment du cycle cardiaque s'y ajoutent les ondes réfléchies. Plusieurs études font état d'une forte augmentation de la pression systolique centrale par les ondes réfléchies chez les patientes atteintes de prééclampsie, suggérant l'utilisation de cette méthode pour le diagnostic et le monitoring voire pour le dépistage de ces patientes. Pour atteindre ce but, il est nécessaire d'établir des normes en rapport notamment avec l'âge gestationnel. Dans la littérature, les données pertinentes actuellement disponibles sont variables, voire contradictoires. Par exemple, les ondes réfléchies proéminentes dans la partie diastolique de l'onde de pouls centrale disparaissaient chez des patientes enceintes au 3eme trimestre comparées à des contrôles non enceintes dans une étude lausannoise, alors que deux autres études présentent l'observation contraire. Autre exemple, certains auteurs décrivent une diminution progressive de l'augmentation systolique jusqu'à l'accouchement alors que d'autres rapportent un nadir aux environs du 6ème mois, suivi d'un retour à des valeurs plus élevées en fin de grossesse. Les mesures effectuées dans toutes ces études différaient dans leur exécution, les patientes étant notamment dans des postions corporelles différentes (couchées, semi-couchées, assises, en décubitus latéral). Or nous savons que le status hémodynamique est très sensible aux changements de position, particulièrement durant la grossesse où l'utérus gravide est susceptible d'avoir des interactions mécaniques avec les veines et possiblement les artères abdominales. Ces différences méthodologiques pourraient donc expliquer, au moins en partie, l'hétérogénéité des résultats concernant l'onde de pouls chez la femme enceinte, ce qui à notre connaissance n'a jamais été exploré. Nous avons mesuré l'onde de pouls dans les positions assise et couchée chez des femmes enceintes, au 3eme trimestre d'une grossesse non compliquée, et nous avons effectué une comparaison avec des données similaire obtenues chez des femmes non enceintes en bonne santé habituelle. Les résultats montrent que la position du corps a un impact majeur sur la forme de l'onde de pouls centrale. Comparée à la position assise, la position couchée se caractérise par une moindre augmentation systolique et, par contraste, une augmentation diastolique plus marquée. De manière inattendue, cet effet s'observe aussi bien en présence qu'en l'absence de grossesse, suggérant que la cause première n'en réside pas dans les interactions mécaniques de l'utérus gravide avec les vaisseaux sanguins abdominaux. Nos observations pourraient par contre être expliquées par l'influence de la position du corps, via un phénomène hydrostatique simple, sur la pression transmurale des artères éloignées du coeur, tout particulièrement celles des membres inférieurs et de l'étage abdominal. En position verticale, ces vaisseaux augmenteraient leur rigidité pour résister à la distension de leur paroi, ce qui y accroîtrait la vitesse de propagation des ondes de pression. En l'état, cette explication reste hypothétique. Mais quoi qu'il en soit, nos résultats expliquent certaines discordances entre les études conduites à ce jour pour caractériser l'influence de la grossesse physiologique sur la forme de l'onde de pouls central. De plus, ils indiquent que la position du corps doit être prise en compte lors de toute investigation utilisant la tonométrie d'applanation pour déterminer la rigidité des artères chez les jeunes femmes enceintes ou non. Il sera aussi nécessaire d'en tenir compte pour établir des normes en vue d'une utilisation de la tonométrie d'aplanation pour dépister ou suivre les patientes atteintes de prééclampsie. Il serait enfin intéressant d'évaluer si l'effet de la position sur la forme de l'onde de pouls central existe également dans l'autre sexe et chez des personnes plus âgées.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Chronic kidney disease (CKD) accelerates vascular stiffening related to age. Arterial stiffness may be evaluated measuring the carotid-femoral pulse wave velocity (PWV) or more simply, as recommended by KDOQI, monitoring pulse pressure (PP). Both correlate to survival and incidence of cardiovascular disease. PWV can also be estimated on the brachial artery using a Mobil-O-Graph; a non-operator dependent automatic device. The aim was to analyse whether, in a dialysis population, PWV obtained by Mobil-O-Graph (MogPWV) is more sensitive for vascular aging than PP. METHODS: A cohort of 143 patients from 4 dialysis units has been followed measuring MogPWV and PP every 3 to 6 months and compared to a control group with the same risk factors but an eGFR > 30 ml/min. RESULTS: MogPWV contrarily to PP did discriminate the dialysis population from the control group. The mean difference translated in age between the two populations was 8.4 years. The increase in MogPWV, as a function of age, was more rapid in the dialysis group. 13.3% of the dialysis patients but only 3.0% of the control group were outliers for MogPWV. The mortality rate (16 out of 143) was similar in outliers and inliers (7.4 and 8.0%/year). Stratifying patients according to MogPWV, a significant difference in survival was seen. A high parathormone (PTH) and to be dialysed for a hypertensive nephropathy were associated to a higher baseline MogPWV. CONCLUSIONS: Assessing PWV on the brachial artery using a Mobil-O-Graph is a valid and simple alternative, which, in the dialysis population, is more sensitive for vascular aging than PP. As demonstrated in previous studies PWV correlates to mortality. Among specific CKD risk factors only PTH is associated with a higher baseline PWV. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02327962.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increased pulse wave velocity (PWV) is a marker of aortic stiffness and an independent predictor of mortality. Matrix Gla-protein (MGP) is a vascular calcification inhibitor that needs vitamin K to be activated. Inactive MGP, known as desphospho-uncarboxylated MGP (dp-ucMGP), can be measured in plasma and has been associated with various cardiovascular markers, cardiovascular outcomes, and mortality. In this study, we hypothesized that high levels of dp-ucMGP are associated with increased PWV. We recruited participants via a multicenter family-based cross-sectional study in Switzerland. Dp-ucMGP was quantified in plasma by sandwich ELISA. Aortic PWV was determined by applanation tonometry using carotid and femoral pulse waveforms. Multiple regression analysis was performed to estimate associations between PWV and dp-ucMGP adjusting for age, renal function, and other cardiovascular risk factors. We included 1001 participants in our analyses (475 men and 526 women). Mean values were 7.87±2.10 m/s for PWV and 0.43±0.20 nmol/L for dp-ucMGP. PWV was positively associated with dp-ucMGP both before and after adjustment for sex, age, body mass index, height, systolic and diastolic blood pressure (BP), heart rate, renal function, low- and high-density lipoprotein, glucose, smoking status, diabetes mellitus, BP and cholesterol lowering drugs, and history of cardiovascular disease (P≤0.01). In conclusion, high levels of dp-ucMGP are independently and positively associated with arterial stiffness after adjustment for common cardiovascular risk factors, renal function, and age. Experimental studies are needed to determine whether vitamin K supplementation slows arterial stiffening by increasing MGP carboxylation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Acute exposure to high altitude stimulates free radical formation in lowlanders, yet whether this persists during chronic exposure in healthy, well-adapted and maladapted highlanders suffering from chronic mountain sickness (CMS) remains to be established. METHODS: Oxidative-nitrosative stress (as determined by the presence of the biomarkers ascorbate radical [A •- ], via electron paramagnetic resonance spectroscopy, and nitrite [NO 2 2 ], via ozone-based chemiluminescence) was assessed in venous blood of 25 male highlanders in Bolivia living at 3,600 m with CMS (n 5 13, CMS 1 ) and without CMS (n 5 12, CMS 2 ). Twelve age- and activity-matched, healthy, male lowlanders were examined at sea level and during acute hypoxia. We also measured fl ow-mediated dilatation (FMD), arterial stiffness defined by augmentation index normalized for a heart rate of 75 beats/min (AIx-75), and carotid intima-media thickness (IMT). RESULTS: Compared with normoxic lowlanders, oxidative-nitrosative stress was moderately increased in the CMS 2 group ( P , .05), as indicated by elevated A •- (3,191 457 arbitrary units [AU] vs 2,640 445 AU) and lower NO 2 2 (206 55 nM vs 420 128 nM), whereas vascular function remained preserved. This was comparable to that observed during acute hypoxia in lowlanders in whom vascular dysfunction is typically observed. In contrast, this response was markedly exaggerated in CMS 1 group (A •- , 3,765 429 AU; NO 2 2 , 148 50 nM) compared with both the CMS 2 group and lowlanders ( P , .05). This was associated with systemic vascular dysfunction as indicated by lower ( P , .05 vs CMS 2 ) FMD (4.2% 0.7% vs 7.6% 1.7%) and increased AIx-75 (23% 8% vs 12% 7%) and carotid IMT (714 127 m M vs 588 94 m M). CONCLUSIONS: Healthy highlanders display a moderate, sustained elevation in oxidative-nitrosative stress that, unlike the equivalent increase evoked by acute hypoxia in healthy lowlanders, failed to affect vascular function. Its more marked elevation in patients with CMS may contribute to systemic vascular dysfunction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT BACKGROUND: Chronic mountain sickness (CMS) is a major public health problem characterized by exaggerated hypoxemia and erythrocytosis. In more advanced stages, these patients often present functional and structural changes of the pulmonary circulation, but there is little information on the systemic circulation. In patients suffering from diseases associated with chronic hypoxemia at low altitude, systemic vascular function is altered. We hypothesized that patients with CMS display systemic vascular dysfunction that may predispose them to increased systemic cardiovascular morbidity. METHODS: To test this hypothesis, we assessed systemic endothelial function (by flow- mediated dilation, FMD), arterial stiffness and carotid intima-media thickness and arterial oxygenation (SaO(2)) in 23 patients with CMS without additional classical cardiovascular risk factors and 27 age-matched healthy mountain dwellers born and permanently living at 3600 m. For some analyses subjects were classified according to baseline SaO(2) quartiles; FMD of the highest quartile subgroup (SaO(2) ≥90%) was used as reference value for post-hoc comparisons. RESULTS: Patients with CMS displayed marked systemic vascular dysfunction, as evidenced by impaired FMD (4.6±1.2 vs. 7.6±1.9%, CMS vs. controls, P<0.0001), greater pulse wave velocity (10.6±2.1 vs. 8.4±1.0 m/s, P<0.001) and carotid intima-media thickness (690±120 vs. 570±110 μm, P=0.001). A positive relationship existed between SaO(2) and FMD (r=0.62, P<0.0001). Oxygen inhalation improved (P<0.001), but did not normalize FMD in patients with CMS; whereas it normalized FMD in hypoxemic controls (SaO(2) <90%) and had no detectable effect in normoxemic (SaO(2) ≥90%) control subjects. CONCLUSIONS: Patients with CMS display marked systemic vascular dysfunction. Structural and functional alterations contribute to this problem that may predispose these patients to premature cardiovascular disease. Clinical Trials Gov Registration # NCT01182792.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: In a previous study we demonstrated that mild metabolic alkalosis resulting from standard bicarbonate haemodialysis induces hypotension. In this study, we have further investigated the changes in systemic haemodynamics induced by bicarbonate and calcium, using non-invasive procedures. METHODS: In a randomized controlled trial with a single-blind, crossover design, we sequentially changed the dialysate bicarbonate and calcium concentrations (between 26 and 35 mmol/l for bicarbonate and either 1.25 or 1.50 mmol/l for calcium). Twenty-one patients were enrolled for a total of 756 dialysis sessions. Systemic haemodynamics was evaluated using pulse wave analysers. Bioimpedance and BNP were used to compare the fluid status pattern. RESULTS: The haemodynamic parameters and the pre-dialysis BNP using either a high calcium or bicarbonate concentration were as follows: systolic blood pressure (+5.6 and -4.7 mmHg; P < 0.05 for both), stroke volume (+12.3 and +5.2 ml; P < 0.05 and ns), peripheral resistances (-190 and -171 dyne s cm(-5); P < 0.05 for both), central augmentation index (+1.1% and -2.9%; ns and P < 0.05) and BNP (-5 and -170 ng/l; ns and P < 0.05). The need of staff intervention was similar in all modalities. CONCLUSIONS: Both high bicarbonate and calcium concentrations in the dialysate improve the haemodynamic pattern during dialysis. Bicarbonate reduces arterial stiffness and ameliorates the heart tolerance for volume overload in the interdialytic phase, whereas calcium directly increases stroke volume. The slight hypotensive effect of alkalaemia should motivate a probative reduction of bicarbonate concentration in dialysis fluid for haemodynamic reasons, only in the event of failure of classical tools to prevent intradialytic hypotension.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To assess the role of vasopressin (AVP) in congestive heart failure (CHF), we investigated 10 patients with CHF refractory to conventional treatment, before and 60 minutes after intravenous administration of 5 micrograms/kg of d(CH2)5Tyr(Me)AVP, a specific antagonist of AVP at the vascular receptor level. Heart rate, systemic arterial pressure, pulmonary arterial pressure, pulmonary capillary wedge pressure, cardiac index by thermodilution, and cutaneous blood flow by laser-Doppler technique were measured. In 9 patients there was no significant hemodynamic and cutaneous blood flow response to the AVP antagonist. Plasma AVP was 2.3 +/- 0.8 pg/ml and plasma osmolality 284 +/- 14 mosm/kg H2O. The tenth patient had the most severe CHF. His plasma AVP was 55 pg/ml and plasma osmolality 290 mosm/kg. He responded to the AVP antagonist with a marked decrease in systemic arterial pressure from 115/61 to 79/41 mm Hg, in pulmonary arterial pressure from 58/31 to 33/13 mm Hg and in pulmonary capillary wedge pressure from 28 to 15 mm Hg. Simultaneously cardiac index increased from 1.1 to 2.21 X min-1 X m-2 and cutaneous blood flow rose 5-fold. Thus, most patients with CHF have only moderately elevated plasma AVP and its role in determining peripheral vascular resistance appears to be limited. AVP may become important in rare patients presenting with marked hemodynamic instability and very high plasma AVP.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To assess the role of arginine vasopressin (AVP) in congestive heart failure (CHF), 10 patients with CHF refractory to conventional treatment were studied before and 60 minutes after intravenous administration of 5 micrograms/kg of d(CH2)5Tyr(Me)AVP, a specific antagonist of AVP at the vascular receptor level. Heart rate, systemic arterial pressure, pulmonary arterial pressure, pulmonary capillary wedge pressure, cardiac index by thermodilution and cutaneous blood flow by laser-Doppler technique were measured. In 9 patients with no significant hemodynamic and cutaneous blood flow response to the AVP antagonist, baseline values (mean +/- standard deviation) were: heart rate, 77 +/- 14 beats/min; systemic arterial pressure, 120/79 +/- 18/8 mm Hg; pulmonary arterial pressure, 42/21 +/- 12/8 mm Hg; pulmonary capillary wedge pressure, 19 +/- 7 mm Hg; cardiac index, 2.2 +/- 0.6 liters/min/m2; plasma AVP, 2.3 +/- 0.8 pg/ml; and plasma osmolality, 284 +/- 14 mosm/kg H2O. The tenth patient had the most severe CHF. His plasma AVP level was 55 pg/ml and plasma osmolality was 290 mosm/kg. He responded to the AVP antagonist with a decrease in systemic arterial pressure from 115/61 to 79/41 mm Hg, in pulmonary arterial pressure from 58/31 to 33/13 mm Hg and in pulmonary capillary wedge pressure from 28 to 15 mm Hg. Simultaneously, cardiac index increased from 1.1 to 2.2 liters/min/m2 and heart rate from 113 to 120 beats/min; cutaneous blood flow increased 5-fold.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pulse wave velocity (PWV) is a surrogate of arterial stiffness and represents a non-invasive marker of cardiovascular risk. The non-invasive measurement of PWV requires tracking the arrival time of pressure pulses recorded in vivo, commonly referred to as pulse arrival time (PAT). In the state of the art, PAT is estimated by identifying a characteristic point of the pressure pulse waveform. This paper demonstrates that for ambulatory scenarios, where signal-to-noise ratios are below 10 dB, the performance in terms of repeatability of PAT measurements through characteristic points identification degrades drastically. Hence, we introduce a novel family of PAT estimators based on the parametric modeling of the anacrotic phase of a pressure pulse. In particular, we propose a parametric PAT estimator (TANH) that depicts high correlation with the Complior(R) characteristic point D1 (CC = 0.99), increases noise robustness and reduces by a five-fold factor the number of heartbeats required to obtain reliable PAT measurements.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Blood pressure is lowered for a few hours after aerobic exercise, but also after resistance exercise, although for a shorter period of time. An exercise program can significantly lower resting and ambulatory BP measurements. Multiple mechanisms interact for the BP lowering effect, such as decreased total peripheral resistance, enhanced endothelial function, diminished sympathetic or rennin plasmatic activity, structural vascular modifications and baroreceptor reflex modulation. New exercises like eccentric or isometric (handgrip) contractions are promising. Resistance activities have long been considered dangerous for blood vessels because of increased arterial stiffness, but if the intensity remains moderate and aerobic exercises are integrated, then the effects are altogether beneficial.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: : The systolic augmentation index (sAix), calculated from the central aortic pulse wave (reconstructed from the noninvasive recording of the radial pulse with applanation tonometry), is widely used as a simple index of central arterial stiffness, but has the disadvantage of also being influenced by the timing of the reflected with respect to the forward pressure wave, as shown by its inverse dependence on heart rate (HR). During diastole, the central aortic pulse also contains reflected waves, but their relationship to arterial stiffness and HR has not been studied. METHODS: : In 48 men and 45 women, all healthy, with ages ranging from 19 to 70 years, we measured pulse wave velocity (PWV, patients supine), a standard evaluator of arterial stiffness, and carried out radial applanation tonometry (patients sitting and supine). The impact of reflected waves on the diastolic part of the aortic pressure waveform was quantified in the form of a diastolic augmentation index (dAix). RESULTS: : Across ages, sexes, and body position, there was an inverse relationship between the sAix and the dAix. When PWV and HR were added as covariates to a prediction model including age, sex and body position as main factors, the sAix was directly related to PWV (P < 0.0001) and inversely to HR (P < 0.0001). With the same analysis, the dAix was inversely related to PWV (P < 0.0001) and independent of HR (P = 0.52). CONCLUSION: : The dAix has the same degree of linkage to arterial stiffness as the more conventional sAix, while being immune to the confounding effect of HR. The quantification of diastolic aortic pressure augmentation by reflected waves could be a useful adjunct to pulse wave analysis.