2 resultados para synchrotron infrared spectroscopy

em Université de Lausanne, Switzerland


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Inadequate intraoperative cerebral perfusion has been suggested as a possible cause of postoperative cognitive dysfunction (POCD). Methods: We investigated 35 patients aged 65 or older undergoing elective major non-cardiac surgery under standardized general anaesthesia (thiopental, sevoflurane, fentanyl, atracurium). Intraoperative cerebral perfusion was monitored with transcranial Doppler, and near-infrared spectroscopy (NIRS). Arterial blood pressure was monitored continuously with a Finapres device. Mx, an index allowing continuous monitoring of cerebrovascular autoregulation based on the changes in mean arterial blood pressure (MAP) and cerebral blood flow velocity was calculated. Mx >0.5 was defined as disturbed cerebrovascular autoregulation. Cognitive function was measured preoperatively and 7 days postoperatively using the CERAD-NAB Plus test battery. A postoperative decline >1 z-score in at least two of the tested domains was defined as POCD. Data are shown as mean } SD. Results: Mean age was 75 } 7 yrs. Sixteen patients (46%) developed POCD. These patients were older (77 } 8 vs 73 } 7 yrs), had lower MAP (77 } 12 vs 81 } 11 mm Hg), lower cerebral tissue oxygenation indices measured by NIRS (66.8 } 6.0 vs 68.6 } 4.3%) and less efficient cerebrovascular autoregulation (Mx 0.54 } 0.17 and 0.44 } 0.22) than patients without POCD. Disturbed intraoperative cerebrovascular autoregulation was found more often (56 vs 37%) in patients with POCD. However, none of these differences reached statistical significance. Conclusions: Our data show a trend towards subtle changes in intraoperative cerebral perfusion in elderly patients who develop POCD. However, a cause effect relationship must not be assumed and a greater number of patients needs to be investigated patients. However, more patients need to be investigated to confirm and characterize these differences.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nonstructural protein 4B (NS4B) plays an essential role in the formation of the hepatitis C virus (HCV) replication complex. It is a relatively poorly characterized integral membrane protein predicted to comprise four transmembrane segments in its central portion. Here, we describe a novel determinant for membrane association represented by amino acids (aa) 40 to 69 in the N-terminal portion of NS4B. This segment was sufficient to target and tightly anchor the green fluorescent protein to cellular membranes, as assessed by fluorescence microscopy as well as membrane extraction and flotation analyses. Circular dichroism and nuclear magnetic resonance structural analyses showed that this segment comprises an amphipathic alpha-helix extending from aa 42 to 66. Attenuated total reflection infrared spectroscopy and glycosylation acceptor site tagging revealed that this amphipathic alpha-helix has the potential to traverse the phospholipid bilayer as a transmembrane segment, likely upon oligomerization. Alanine substitution of the fully conserved aromatic residues on the hydrophobic helix side abrogated membrane association of the segment comprising aa 40 to 69 and disrupted the formation of a functional replication complex. These results provide the first atomic resolution structure of an essential membrane-associated determinant of HCV NS4B.