4 resultados para subspace

em Université de Lausanne, Switzerland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The multiscale finite volume (MsFV) method has been developed to efficiently solve large heterogeneous problems (elliptic or parabolic); it is usually employed for pressure equations and delivers conservative flux fields to be used in transport problems. The method essentially relies on the hypothesis that the (fine-scale) problem can be reasonably described by a set of local solutions coupled by a conservative global (coarse-scale) problem. In most cases, the boundary conditions assigned for the local problems are satisfactory and the approximate conservative fluxes provided by the method are accurate. In numerically challenging cases, however, a more accurate localization is required to obtain a good approximation of the fine-scale solution. In this paper we develop a procedure to iteratively improve the boundary conditions of the local problems. The algorithm relies on the data structure of the MsFV method and employs a Krylov-subspace projection method to obtain an unconditionally stable scheme and accelerate convergence. Two variants are considered: in the first, only the MsFV operator is used; in the second, the MsFV operator is combined in a two-step method with an operator derived from the problem solved to construct the conservative flux field. The resulting iterative MsFV algorithms allow arbitrary reduction of the solution error without compromising the construction of a conservative flux field, which is guaranteed at any iteration. Since it converges to the exact solution, the method can be regarded as a linear solver. In this context, the schemes proposed here can be viewed as preconditioned versions of the Generalized Minimal Residual method (GMRES), with a very peculiar characteristic that the residual on the coarse grid is zero at any iteration (thus conservative fluxes can be obtained).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Red blood cells (RBCs) present unique reversible shape deformability, essential for both function and survival, resulting notably in cell membrane fluctuations (CMF). These CMF have been subject of many studies in order to obtain a better understanding of these remarkable biomechanical membrane properties altered in some pathological states including blood diseases. In particular the discussion over the thermal or metabolic origin of the CMF has led in the past to a large number of investigations and modeling. However, the origin of the CMF is still debated. In this article, we present an analysis of the CMF of RBCs by combining digital holographic microscopy (DHM) with an orthogonal subspace decomposition of the imaging data. These subspace components can be reliably identified and quantified as the eigenmode basis of CMF that minimizes the deformation energy of the RBC structure. By fitting the observed fluctuation modes with a theoretical dynamic model, we find that the CMF are mainly governed by the bending elasticity of the membrane and that shear and tension elasticities have only a marginal influence on the membrane fluctations of the discocyte RBC. Further, our experiments show that the role of ATP as a driving force of CMF is questionable. ATP, however, seems to be required to maintain the unique biomechanical properties of the RBC membrane that lead to thermally excited CMF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The configuration space available to randomly cyclized polymers is divided into subspaces accessible to individual knot types. A phantom chain utilized in numerical simulations of polymers can explore all subspaces, whereas a real closed chain forming a figure-of-eight knot, for example, is confined to a subspace corresponding to this knot type only. One can conceptually compare the assembly of configuration spaces of various knot types to a complex foam where individual cells delimit the configuration space available to a given knot type. Neighboring cells in the foam harbor knots that can be converted into each other by just one intersegmental passage. Such a segment-segment passage occurring at the level of knotted configurations corresponds to a passage through the interface between neighboring cells in the foamy knot space. Using a DNA topoisomerase-inspired simulation approach we characterize here the effective interface area between neighboring knot spaces as well as the surface-to-volume ratio of individual knot spaces. These results provide a reference system required for better understanding mechanisms of action of various DNA topoisomerases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The multiscale finite-volume (MSFV) method is designed to reduce the computational cost of elliptic and parabolic problems with highly heterogeneous anisotropic coefficients. The reduction is achieved by splitting the original global problem into a set of local problems (with approximate local boundary conditions) coupled by a coarse global problem. It has been shown recently that the numerical errors in MSFV results can be reduced systematically with an iterative procedure that provides a conservative velocity field after any iteration step. The iterative MSFV (i-MSFV) method can be obtained with an improved (smoothed) multiscale solution to enhance the localization conditions, with a Krylov subspace method [e.g., the generalized-minimal-residual (GMRES) algorithm] preconditioned by the MSFV system, or with a combination of both. In a multiphase-flow system, a balance between accuracy and computational efficiency should be achieved by finding a minimum number of i-MSFV iterations (on pressure), which is necessary to achieve the desired accuracy in the saturation solution. In this work, we extend the i-MSFV method to sequential implicit simulation of time-dependent problems. To control the error of the coupled saturation/pressure system, we analyze the transport error caused by an approximate velocity field. We then propose an error-control strategy on the basis of the residual of the pressure equation. At the beginning of simulation, the pressure solution is iterated until a specified accuracy is achieved. To minimize the number of iterations in a multiphase-flow problem, the solution at the previous timestep is used to improve the localization assumption at the current timestep. Additional iterations are used only when the residual becomes larger than a specified threshold value. Numerical results show that only a few iterations on average are necessary to improve the MSFV results significantly, even for very challenging problems. Therefore, the proposed adaptive strategy yields efficient and accurate simulation of multiphase flow in heterogeneous porous media.