2 resultados para studied neutrality

em Université de Lausanne, Switzerland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unraveling the effect of selection vs. drift on the evolution of quantitative traits is commonly achieved by one of two methods. Either one contrasts population differentiation estimates for genetic markers and quantitative traits (the Q(st)-F(st) contrast) or multivariate methods are used to study the covariance between sets of traits. In particular, many studies have focused on the genetic variance-covariance matrix (the G matrix). However, both drift and selection can cause changes in G. To understand their joint effects, we recently combined the two methods into a single test (accompanying article by Martin et al.), which we apply here to a network of 16 natural populations of the freshwater snail Galba truncatula. Using this new neutrality test, extended to hierarchical population structures, we studied the multivariate equivalent of the Q(st)-F(st) contrast for several life-history traits of G. truncatula. We found strong evidence of selection acting on multivariate phenotypes. Selection was homogeneous among populations within each habitat and heterogeneous between habitats. We found that the G matrices were relatively stable within each habitat, with proportionality between the among-populations (D) and the within-populations (G) covariance matrices. The effect of habitat heterogeneity is to break this proportionality because of selection for habitat-dependent optima. Individual-based simulations mimicking our empirical system confirmed that these patterns are expected under the selective regime inferred. We show that homogenizing selection can mimic some effect of drift on the G matrix (G and D almost proportional), but that incorporating information from molecular markers (multivariate Q(st)-F(st)) allows disentangling the two effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper aims at evaluating the compatibility of coercive climate policies with liberal neutrality. More precisely, it focuses on the doctrine of state neutrality as associated with the "harm principle". It argues that given the difficulty of attributing causal responsibilities for climate harms to individuals, the harm principle doesn't work in this case, at least if one endorses a liberal atomistic ontology. Furthermore, the definition of what constitutes climate harms implies making moral assumptions, which makes it impossible to justify climate policies in a neutral way. Finally, the paper shows another consequence of applying neutrality to the case of climate change, that is the risk of a shift from political forms of decision-making to technocracy. Focusing too much on liberty of choice may (paradoxically) be to the detriment of political freedom. The paper concludes that climate change is an intrinsically moral issue and that it should be the occasion of a political debate about our current values and lifestyles. It should not be reduced to a mere question of carbon metric.