4 resultados para stress effects
em Université de Lausanne, Switzerland
Resumo:
The determination of characteristic cardiac parameters, such as displacement, stress and strain distribution are essential for an understanding of the mechanics of the heart. The calculation of these parameters has been limited until recently by the use of idealised mathematical representations of biventricular geometries and by applying simple material laws. On the basis of 20 short axis heart slices and in consideration of linear and nonlinear material behaviour we have developed a FE model with about 100,000 degrees of freedom. Marching Cubes and Phong's incremental shading technique were used to visualise the three dimensional geometry. In a quasistatic FE analysis continuous distribution of regional stress and strain corresponding to the endsystolic state were calculated. Substantial regional variation of the Von Mises stress and the total strain energy were observed at all levels of the heart model. The results of both the linear elastic model and the model with a nonlinear material description (Mooney-Rivlin) were compared. While the stress distribution and peak stress values were found to be comparable, the displacement vectors obtained with the nonlinear model were generally higher in comparison with the linear elastic case indicating the need to include nonlinear effects.
Resumo:
To test the dose response effect of infused fish oil (FO) rich in n-3 PUFAs on the inflammatory response to endotoxin (LPS) and on membrane incorporation of fatty acids in healthy subjects. Prospective, sequential investigation comparing three different FO doses. Three groups of male subjects aged 26.8 +/- 3.2 years (BMI 22.5 +/- 2.1). One of three FO doses (Omegaven10%) as a slow infusion before LPS: 0.5 g/kg 1 day before LPS, 0.2 g/kg 1 day before, or 0.2 g/kg 2 h before. Temperature, hemodynamic variables, indirect calorimetry and blood samples (TNF-alpha, stress hormones) were collected. After LPS temperature, ACTH and TNF-alpha concentrations increased in the three groups: the responses were significantly blunted (p < 0.0001) compared with the control group of the Pluess et al. trial. Cortisol was unchanged. Lowest plasma ACTH, TNF-alpha and temperature AUC values were observed after a single 0.2 g/kg dose of FO. EPA incorporation into platelet membranes was dose-dependent. Having previously shown that the response to LPS was reproducible, this study shows that three FO doses blunted it to various degrees. The 0.2 g/kg perfusion immediately before LPS was the most efficient in blunting the responses, suggesting LPS capture in addition to the systemic and membrane effects.
Resumo:
The aim of this study was to evaluate adverse effects of multiwalled carbon nanotubes (MWCNT), produced for industrial purposes, on the human epithelial cell line A549. MWCNT were dispersed in dipalmitoyl lecithin (DPL), a component of pulmonary surfactant, and the effects of dispersion in DPL were compared to those in two other media: ethanol (EtOH) and phosphate-buffered saline (PBS). Effects of MWCNT were also compared to those of two asbestos fibers (chrysotile and crocidolite) and carbon black (CB) nanoparticles, not only in A549 cells but also in mesothelial cells (MeT5A human cell line), used as an asbestos-sensitive cell type. MWCNT formed agglomerates on top of both cell lines (surface area 15-35 μm2) that were significantly larger and more numerous in PBS than in EtOH and DPL. Whatever the dispersion media, incubation with 100 μg/ml MWCNT induced a similar decrease in metabolic activity without changing cell membrane permeability or apoptosis. Neither MWCNT cellular internalization nor oxidative stress was observed. In contrast, asbestos fibers penetrated into the cells, decreased metabolic activity but not cell membrane permeability, and increased apoptosis, without decreasing cell number. CB was internalized without any adverse effects. In conclusion, this study demonstrates that MWCNT produced for industrial purposes exert adverse effects without being internalized by human epithelial and mesothelial pulmonary cell lines. [Authors]
Resumo:
Inhibitors of the HIV aspartyl protease [HIV protease inhibitors (HIV-PIs)] are the cornerstone of treatment for HIV. Beyond their well-defined antiretroviral activity, these drugs have additional effects that modulate cell viability and homeostasis. However, little is known about the virus-independent pathways engaged by these molecules. Here we show that the HIV-PI Nelfinavir decreases translation rates and promotes a transcriptional program characteristic of the integrated stress response (ISR). Mice treated with Nelfinavir display hallmarks of this stress response in the liver, including α subunit of translation initiation factor 2 (eIF2α) phosphorylation, activating transcription factor-4 (ATF4) induction, and increased expression of known downstream targets. Mechanistically, Nelfinavir-mediated ISR bypassed direct activation of the eIF2α stress kinases and instead relied on the inhibition of the constitutive eIF2α dephosphorylation and down-regulation of the phophatase cofactor CReP (Constitutive Repressor of eIF2α Phosphorylation; also known as PPP1R15B). These findings demonstrate that the modulation of eIF2α-specific phosphatase cofactor activity can be a rheostat of cellular homeostasis that initiates a functional ISR and suggest that the HIV-PIs could be repositioned as therapeutics in human diseases to modulate translation rates and stress responses.