6 resultados para steel column
em Université de Lausanne, Switzerland
Resumo:
INTRODUCTION: The analysis of glucosinolates (GS) is traditionally performed by reverse-phase liquid chromatography coupled to ultraviolet detection after a time-consuming desulphation step, which is required for increased retention. Simpler and more efficient alternative methods that can shorten both sample preparation and analysis are much needed. OBJECTIVE: To evaluate the feasibility of using ultrahigh-pressure liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UHPLC-QTOFMS) for the rapid profiling of intact GS. METHODOLOGY: A simple and short extraction of GS from Arabidopsis thaliana leaves was developed. Four sub-2 µm reverse-phase columns were tested for the rapid separation of these polar compounds using formic acid as the chromatographic additive. High-resolution QTOFMS was used to detect and identify GS. RESULTS: A novel charged surface hybrid (CSH) column was found to provide excellent retention and separation of GS within a total running time of 11 min. Twenty-one GS could be identified based on their accurate mass as well as isotopic and fragmentation patterns. The method was applied to determine the changes in GS content that occur after herbivory in Arabidopsis. In addition, we evaluated its applicability to the profiling of other Brassicaceae species. CONCLUSION: The method developed can profile the full range of GS, including the most polar ones, in a shorter time than previous methods, and is highly compatible with mass spectrometric detection.
Resumo:
A radiochemical procedure was developed for the sequential determination of Pu and Am radioisotopes in environmental samples. The radioisotope activities were then used to assess the origin and release date of the environmental plutonium. The radioanalytical procedure is based on the separation of Pu and Am on selective extraction chromatographic resins (Eichrom TEVA and DGA). Alpha sources were prepared by electrodeposition on stainless steel discs, and the alpha emitting radionuclides (238Pu, 239,240Pu and 241Am) were measured by alpha spectrometry. For the determination of the beta emitting 241Pu, the Pu alpha source was leached in hot concentrated nitric acid and the Pu fraction further purified by extraction chromatography on a small column of TEVA resin (100 μg of resin in a pipette tip). 241Pu is then measured by ultra low level liquid scintillation counting. Due to the lack of reference material for 241Pu, the proposed radiochemical method was nevertheless validated using four IAEA reference sediments with information values of 241Pu. The proposed method was then used to determine the 238Pu, 239,240Pu, 241Pu and 241Am activity concentrations in alpine soils of France and Switzerland. The soil is the primary receptor of the atmospheric radioactive fallout and, because of the strong binding interaction with soils particles, the isotopes are little fractionated. Therefore, the activity ratios 241Pu/239+240Pu and 238Pu/239,240Pu in soil samples were used to determine the origin (source) and date of the Pu contamination in the investigated alpine sites. The 241Pu/239,240Pu and 238Pu/239,240Pu activity ratios confirmed that the main origin of Pu in the alpine soils was the global fallout from the nuclear bomb tests (NBT) in the fifties and sixties. Furthermore, the 241Pu/241Am activity ratios were used to determine the age of the Pu contamination, which is also an important data for distinguishing the Pu sources. The estimation of the date of the contamination, by the 241Pu/241Am age-dating method, further confirmed the NBT as the Pu source. However, the 241Pu/241Am dating method was limited to samples where Pu-Am fractionation was insignificant. If any, the contribution of the Chernobyl accident in the studied sites is negligible.
Resumo:
In addition to the importance of sample preparation and extract separation, MS detection is a key factor in the sensitive quantification of large undigested peptides. In this article, a linear ion trap MS (LIT-MS) and a triple quadrupole MS (TQ-MS) have been compared in the detection of large peptides at subnanomolar concentrations. Natural brain natriuretic peptide, C-peptide, substance P and D-Junk-inhibitor peptide, a full D-amino acid therapeutic peptide, were chosen. They were detected by ESI and simultaneous MS(1) and MS(2) acquisitions. With direct peptide infusion, MS(2) spectra revealed that fragmentation was peptide dependent, milder on the LIT-MS and required high collision energies on the TQ-MS to obtain high-intensity product ions. Peptide adsorption on surfaces was overcome and peptide dilutions ranging from 0.1 to 25 nM were injected onto an ultra high-pressure LC system with a 1 mm id analytical column and coupled with the MS instruments. No difference was observed between the two instruments when recording in LC-MS(1) acquisitions. However, in LC-MS(2) acquisitions, a better sensitivity in the detection of large peptides was observed with the LIT-MS. Indeed, with the three longer peptides, the typical fragmentation in the TQ-MS resulted in a dramatic loss of sensitivity (> or = 10x).
Resumo:
Capillary electrophoresis has drawn considerable attention in the past few years, particularly in the field of chiral separations because of its high separation efficiency. However, its routine use in therapeutic drug monitoring is hampered by its low sensitivity due to a short optical path. We have developed a capillary zone electrophoresis (CZE) method using 2mM of hydroxypropyl-β-cyclodextrin as a chiral selector, which allows base-to-base separation of the enantiomers of mianserin (MIA), desmethylmianserin (DMIA), and 8-hydroxymianserin (OHMIA). Through the use of an on-column sample concentration step after liquid-liquid extraction from plasma and through the presence of an internal standard, the quantitation limits were found to be 5 ng/mL for each enantiomer of MIA and DMIA and 15 ng/mL for each enantiomer of OHMIA. To our knowledge, this is the first published CE method that allows its use for therapeutic monitoring of antidepressants due to its sensitivity down to the low nanogram range. The variability of the assays, as assessed by the coefficients of variation (CV) measured at two concentrations for each substance, ranged from 2 to 14% for the intraday (eight replicates) and from 5 to 14% for the interday (eight replicates) experiments. The deviations from the theoretical concentrations, which represent the accuracy of the method, were all within 12.5%. A linear response was obtained for all compounds within the range of concentrations used for the calibration curves (10-150 ng/mL for each enantiomer of MIA and DMIA and 20-300 ng/mL for each enantiomer of OHMIA). Good correlations were calculated between [(R) + (S)]-MIA and DMIA concentrations measured in plasma samples of 20 patients by a nonchiral gas chromatography method and CZE, and between the (R)- and (S)-concentrations of MIA and DMIA measured in plasma samples of 37 patients by a previously described chiral high-performance liquid chromatography method and CZE. Finally, no interference was noted from more than 20 other psychotropic drugs. Thus, this method, which is both sensitive and selective, can be routinely used for therapeutic monitoring of the enantiomers of MIA and its metabolites. It could be very useful due to the demonstrated interindividual variability of the stereoselective metabolism of MIA.
Resumo:
The aim of this work was to determine the effect of light crude oil on bacterial communities during an experimental oil spill in the North Sea and in mesocosms (simulating a heavy, enclosed oil spill), and to isolate and characterize hydrocarbon-degrading bacteria from the water column. No oil-induced changes in bacterial community (3 m below the sea surface) were observed 32 h after the experimental spill at sea. In contrast, there was a decrease in the dominant SAR11 phylotype and an increase in Pseudoalteromonas spp. in the oiled mesocosms (investigated by 16S rRNA gene analysis using denaturing gradient gel electrophoresis), as a consequence of the longer incubation, closer proximity of the samples to oil, and the lack of replenishment with seawater. A total of 216 strains were isolated from hydrocarbon enrichment cultures, predominantly belonging to the genus Pseudoaltero monas; most strains grew on PAHs, branched and straight-chain alkanes, as well as many other carbon sources. No obligate hydrocarbonoclastic bacteria were isolated or detected, highlighting the potential importance of cosmopolitan marine generalists like Pseudoalteromonas spp. in degrading hydrocarbons in the water column beneath an oil slick, and revealing the susceptibility to oil pollution of SAR11, the most abundant bacterial clade in the surface ocean.