73 resultados para statistical parameters
em Université de Lausanne, Switzerland
Resumo:
The basal sliding surfaces in large rockslides are often composed of several surfaces and possess a complex geometry. The exact morphology and location in three dimensions of the sliding surface remains generally unknown, in spite of extensive field and subsurface investigations, such as those at the Åknes rockslide (western Norway). This knowledge is crucial for volume estimations, failure mechanisms, and numerical slope stability modeling. This paper focuses on the geomorphologic characterization of the basal sliding surface of a postglacial rockslide scar in the vicinity of Åknes. This scar displays a stepped basal sliding surface formed by dip slopes of the gneiss foliation linked together by steeply dipping fractures. A detailed characterization of the rockslide scar by means of high-resolution digital elevation models permits statistical parameters of dip angle, spacing, persistence, and roughness of foliation surfaces and step fractures to be obtained. The characteristics are used for stochastic simulations of stepped basal sliding surfaces at the Åknes rockslide. These findings are compared with previous models based on geophysical investigations. This study discusses the investigation of rockslide scars and rock outcrops for a better understanding of potential rockslides. This work identifies possible basal sliding surface locations, which is a valuable input for volume estimates, design and location of monitoring instrumentation, and numerical slope stability modeling.
Resumo:
We review methods to estimate the average crystal (grain) size and the crystal (grain) size distribution in solid rocks. Average grain sizes often provide the base for stress estimates or rheological calculations requiring the quantification of grain sizes in a rock's microstructure. The primary data for grain size data are either 1D (i.e. line intercept methods), 2D (area analysis) or 3D (e.g., computed tomography, serial sectioning). These data have been used for different data treatments over the years, whereas several studies assume a certain probability function (e.g., logarithm, square root) to calculate statistical parameters as the mean, median, mode or the skewness of a crystal size distribution. The finally calculated average grain sizes have to be compatible between the different grain size estimation approaches in order to be properly applied, for example, in paleo-piezometers or grain size sensitive flow laws. Such compatibility is tested for different data treatments using one- and two-dimensional measurements. We propose an empirical conversion matrix for different datasets. These conversion factors provide the option to make different datasets compatible with each other, although the primary calculations were obtained in different ways. In order to present an average grain size, we propose to use the area-weighted and volume-weighted mean in the case of unimodal grain size distributions, respectively, for 2D and 3D measurements. The shape of the crystal size distribution is important for studies of nucleation and growth of minerals. The shape of the crystal size distribution of garnet populations is compared between different 2D and 3D measurements, which are serial sectioning and computed tomography. The comparison of different direct measured 3D data; stereological data and direct presented 20 data show the problems of the quality of the smallest grain sizes and the overestimation of small grain sizes in stereological tools, depending on the type of CSD. (C) 2011 Published by Elsevier Ltd.
Resumo:
Swain corrects the chi-square overidentification test (i.e., likelihood ratio test of fit) for structural equation models whethr with or without latent variables. The chi-square statistic is asymptotically correct; however, it does not behave as expected in small samples and/or when the model is complex (cf. Herzog, Boomsma, & Reinecke, 2007). Thus, particularly in situations where the ratio of sample size (n) to the number of parameters estimated (p) is relatively small (i.e., the p to n ratio is large), the chi-square test will tend to overreject correctly specified models. To obtain a closer approximation to the distribution of the chi-square statistic, Swain (1975) developed a correction; this scaling factor, which converges to 1 asymptotically, is multiplied with the chi-square statistic. The correction better approximates the chi-square distribution resulting in more appropriate Type 1 reject error rates (see Herzog & Boomsma, 2009; Herzog, et al., 2007).
Resumo:
Analysis of variance is commonly used in morphometry in order to ascertain differences in parameters between several populations. Failure to detect significant differences between populations (type II error) may be due to suboptimal sampling and lead to erroneous conclusions; the concept of statistical power allows one to avoid such failures by means of an adequate sampling. Several examples are given in the morphometry of the nervous system, showing the use of the power of a hierarchical analysis of variance test for the choice of appropriate sample and subsample sizes. In the first case chosen, neuronal densities in the human visual cortex, we find the number of observations to be of little effect. For dendritic spine densities in the visual cortex of mice and humans, the effect is somewhat larger. A substantial effect is shown in our last example, dendritic segmental lengths in monkey lateral geniculate nucleus. It is in the nature of the hierarchical model that sample size is always more important than subsample size. The relative weight to be attributed to subsample size thus depends on the relative magnitude of the between observations variance compared to the between individuals variance.
Resumo:
OBJECTIVE: The purpose of this article is to assess the effect of the adaptive statistical iterative reconstruction (ASIR) technique on image quality in hip MDCT arthrography and to evaluate its potential for reducing radiation dose. SUBJECTS AND METHODS: Thirty-seven patients examined with hip MDCT arthrography were prospectively randomized into three different protocols: one with a regular dose (volume CT dose index [CTDIvol], 38.4 mGy) and two with a reduced dose (CTDIvol, 24.6 or 15.4 mGy). Images were reconstructed using filtered back projection (FBP) and four increasing percentages of ASIR (30%, 50%, 70%, and 90%). Image noise and contrast-to-noise ratio (CNR) were measured. Two musculoskeletal radiologists independently evaluated several anatomic structures and image quality parameters using a 4-point scale. They also jointly assessed acetabular labrum tears and articular cartilage lesions. RESULTS: With decreasing radiation dose level, image noise statistically significantly increased (p=0.0009) and CNR statistically significantly decreased (p=0.001). We also found a statistically significant reduction in noise (p=0.0001) and increase in CNR (p≤0.003) with increasing percentage of ASIR; in addition, we noted statistically significant increases in image quality scores for the labrum and cartilage, subchondral bone, overall diagnostic quality (up to 50% ASIR), and subjective noise (p≤0.04), and statistically significant reductions for the trabecular bone and muscles (p≤0.03). Regardless of the radiation dose level, there were no statistically significant differences in the detection and characterization of labral tears (n=24; p=1) and cartilage lesions (n=40; p≥0.89) depending on the ASIR percentage. CONCLUSION: The use of up to 50% ASIR in hip MDCT arthrography helps to reduce radiation dose by approximately 35-60%, while maintaining diagnostic image quality comparable to that of a regular-dose protocol using FBP.
Resumo:
Introduction: Ankle arthrodesis (AD) and total ankle replacement (TAR) are typical treatments for ankle osteoarthritis (AO). Despite clinical interest, there is a lack of their outcome evaluation using objective criteria. Gait analysis and plantar pressure assessment are appropriate to detect pathologies in orthopaedics but they are mostly used in lab with few gait cycles. In this study, we propose an ambulatory device based on inertial and plantar pressure sensors to compare the gait during long-distance trials between healthy subjects (H) and patients with AO or treated by AD and TAR. Methods: Our study included four groups: 11 patients with AO, 9 treated by TAR, 7 treated by AD and 6 control subjects. An ambulatory system (Physilog®, CH) was used for gait analysis; plantar pressure measurements were done using a portable insole (Pedar®-X, DE). The subjects were asked to walk 50 meters in two trials. Mean value and coefficient of variation of spatio-temporal gait parameters were calculated for each trial. Pressure distribution was analyzed in ten subregions of foot. All parameters were compared among the four groups using multi-level model-based statistical analysis. Results: Significant difference (p <0.05) with control was noticed for AO patients in maximum force in medial hindfoot and forefoot and in central forefoot. These differences were no longer significant in TAR and AD groups. Cadence and speed of all pathologic groups showed significant difference with control. Both treatments showed a significant improvement in double support and stance. TAR decreased variability in speed, stride length and knee ROM. Conclusions: In spite of a small sample size, this study showed that ankle function after AO treatments can be evaluated objectively based on plantar pressure and spatio-temporal gait parameters measured during unconstrained walking outside the lab. The combination of these two ambulatory techniques provides a promising way to evaluate foot function in clinics.
Resumo:
BACKGROUND: PCR has the potential to detect and precisely quantify specific DNA sequences, but it is not yet often used as a fully quantitative method. A number of data collection and processing strategies have been described for the implementation of quantitative PCR. However, they can be experimentally cumbersome, their relative performances have not been evaluated systematically, and they often remain poorly validated statistically and/or experimentally. In this study, we evaluated the performance of known methods, and compared them with newly developed data processing strategies in terms of resolution, precision and robustness. RESULTS: Our results indicate that simple methods that do not rely on the estimation of the efficiency of the PCR amplification may provide reproducible and sensitive data, but that they do not quantify DNA with precision. Other evaluated methods based on sigmoidal or exponential curve fitting were generally of both poor resolution and precision. A statistical analysis of the parameters that influence efficiency indicated that it depends mostly on the selected amplicon and to a lesser extent on the particular biological sample analyzed. Thus, we devised various strategies based on individual or averaged efficiency values, which were used to assess the regulated expression of several genes in response to a growth factor. CONCLUSION: Overall, qPCR data analysis methods differ significantly in their performance, and this analysis identifies methods that provide DNA quantification estimates of high precision, robustness and reliability. These methods allow reliable estimations of relative expression ratio of two-fold or higher, and our analysis provides an estimation of the number of biological samples that have to be analyzed to achieve a given precision.
Resumo:
Methods used to analyze one type of nonstationary stochastic processes?the periodically correlated process?are considered. Two methods of one-step-forward prediction of periodically correlated time series are examined. One-step-forward predictions made in accordance with an autoregression model and a model of an artificial neural network with one latent neuron layer and with an adaptation mechanism of network parameters in a moving time window were compared in terms of efficiency. The comparison showed that, in the case of prediction for one time step for time series of mean monthly water discharge, the simpler autoregression model is more efficient.
Resumo:
PURPOSE: To meta-analyze the literature on the clinical performance of Class V restorations to assess the factors that influence retention, marginal integrity, and marginal discoloration of cervical lesions restored with composite resins, glass-ionomer-cement-based materials [glass-ionomer cement (GIC) and resin-modified glass ionomers (RMGICs)], and polyacid-modified resin composites (PMRC). MATERIALS AND METHODS: The English literature was searched (MEDLINE and SCOPUS) for prospective clinical trials on cervical restorations with an observation period of at least 18 months. The studies had to report about retention, marginal discoloration, marginal integrity, and marginal caries and include a description of the operative technique (beveling of enamel, roughening of dentin, type of isolation). Eighty-one studies involving 185 experiments for 47 adhesives matched the inclusion criteria. The statistical analysis was carried out by using the following linear mixed model: log (-log (Y /100)) = β + α log(T ) + error with β = log(λ), where β is a summary measure of the non-linear deterioration occurring in each experiment, including a random study effect. RESULTS: On average, 12.3% of the cervical restorations were lost, 27.9% exhibited marginal discoloration, and 34.6% exhibited deterioration of marginal integrity after 5 years. The calculation of the clinical index was 17.4% of failures after 5 years and 32.3% after 8 years. A higher variability was found for retention loss and marginal discoloration. Hardly any secondary caries lesions were detected, even in the experiments with a follow-up time longer than 8 years. Restorations placed using rubber-dam in teeth whose dentin was roughened showed a statistically significantly higher retention rate than those placed in teeth with unprepared dentin or without rubber-dam (p < 0.05). However, enamel beveling had no influence on any of the examined variables. Significant differences were found between pairs of adhesive systems and also between pairs of classes of adhesive systems. One-step self-etching had a significantly worse clinically index than two-step self-etching and three-step etch-and-rinse (p = 0.026 and p = 0.002, respectively). CONCLUSION: The clinical performance is significantly influenced by the type of adhesive system and/or the adhesive class to which the system belongs. Whether the dentin/enamel is roughened or not and whether rubberdam isolation is used or not also significantly influenced the clinical performance. Composite resin restorations placed with two-step self-etching and three-step etch-and-rinse adhesive systems should be preferred over onestep self-etching adhesive systems, GIC-based materials, and PMRCs.
Resumo:
BACKGROUND: Reference intervals for many laboratory parameters determined in 24-h urine collections are either not publicly available or based on small numbers, not sex specific or not from a representative sample. METHODS: Osmolality and concentrations or enzymatic activities of sodium, potassium, chloride, glucose, creatinine, citrate, cortisol, pancreatic α-amylase, total protein, albumin, transferrin, immunoglobulin G, α1-microglobulin, α2-macroglobulin, as well as porphyrins and their precursors (δ-aminolevulinic acid and porphobilinogen) were determined in 241 24-h urine samples of a population-based cohort of asymptomatic adults (121 men and 120 women). For 16 of these 24 parameters creatinine-normalized ratios were calculated based on 24-h urine creatinine. The reference intervals for these parameters were calculated according to the CLSI C28-A3 statistical guidelines. RESULTS: By contrast to most published reference intervals, which do not stratify for sex, reference intervals of 12 of 24 laboratory parameters in 24-h urine collections and of eight of 16 parameters as creatinine-normalized ratios differed significantly between men and women. For six parameters calculated as 24-h urine excretion and four parameters calculated as creatinine-normalized ratios no reference intervals had been published before. For some parameters we found significant and relevant deviations from previously reported reference intervals, most notably for 24-h urine cortisol in women. Ten 24-h urine parameters showed weak or moderate sex-specific correlations with age. CONCLUSIONS: By applying up-to-date analytical methods and clinical chemistry analyzers to 24-h urine collections from a large population-based cohort we provide as yet the most comprehensive set of sex-specific reference intervals calculated according to CLSI guidelines for parameters determined in 24-h urine collections.
Resumo:
Acute and chronic respiratory failure is one of the major and potentially life-threatening features in individuals with myotonic dystrophy type 1 (DM1). Despite several clinical demonstrations showing respiratory problems in DM1 patients, the mechanisms are still not completely understood. This study was designed to investigate whether the DMSXL transgenic mouse model for DM1 exhibits respiratory disorders and, if so, to identify the pathological changes underlying these respiratory problems. Using pressure plethysmography, we assessed the breathing function in control mice and DMSXL mice generated after large expansions of the CTG repeat in successive generations of DM1 transgenic mice. Statistical analysis of breathing function measurements revealed a significant decrease in the most relevant respiratory parameters in DMSXL mice, indicating impaired respiratory function. Histological and morphometric analysis showed pathological changes in diaphragmatic muscle of DMSXL mice, characterized by an increase in the percentage of type I muscle fibers, the presence of central nuclei, partial denervation of end-plates (EPs) and a significant reduction in their size, shape complexity and density of acetylcholine receptors, all of which reflect a possible breakdown in communication between the diaphragmatic muscles fibers and the nerve terminals. Diaphragm muscle abnormalities were accompanied by an accumulation of mutant DMPK RNA foci in muscle fiber nuclei. Moreover, in DMSXL mice, the unmyelinated phrenic afferents are significantly lower. Also in these mice, significant neuronopathy was not detected in either cervical phrenic motor neurons or brainstem respiratory neurons. Because EPs are involved in the transmission of action potentials and the unmyelinated phrenic afferents exert a modulating influence on the respiratory drive, the pathological alterations affecting these structures might underlie the respiratory impairment detected in DMSXL mice. Understanding mechanisms of respiratory deficiency should guide pharmaceutical and clinical research towards better therapy for the respiratory deficits associated with DM1.
Resumo:
BACKGROUND: To date, there is no quality assurance program that correlates patient outcome to perfusion service provided during cardiopulmonary bypass (CPB). A score was devised, incorporating objective parameters that would reflect the likelihood to influence patient outcome. The purpose was to create a new method for evaluating the quality of care the perfusionist provides during CPB procedures and to deduce whether it predicts patient morbidity and mortality. METHODS: We analysed 295 consecutive elective patients. We chose 10 parameters: fluid balance, blood transfused, Hct, ACT, PaO2, PaCO2, pH, BE, potassium and CPB time. Distribution analysis was performed using the Shapiro-Wilcoxon test. This made up the PerfSCORE and we tried to find a correlation to mortality rate, patient stay in the ICU and length of mechanical ventilation. Univariate analysis (UA) using linear regression was established for each parameter. Statistical significance was established when p < 0.05. Multivariate analysis (MA) was performed with the same parameters. RESULTS: The mean age was 63.8 +/- 12.6 years with 70% males. There were 180 CABG, 88 valves, and 27 combined CABG/valve procedures. The PerfSCORE of 6.6 +/- 2.4 (0-20), mortality of 2.7% (8/295), CPB time 100 +/- 41 min (19-313), ICU stay 52 +/- 62 hrs (7-564) and mechanical ventilation of 10.5 +/- 14.8 hrs (0-564) was calculated. CPB time, fluid balance, PaO2, PerfSCORE and blood transfused were significantly correlated to mortality (UA, p < 0.05). Also, CPB time, blood transfused and PaO2 were parameters predicting mortality (MA, p < 0.01). Only pH was significantly correlated for predicting ICU stay (UA). Ultrafiltration (UF) and CPB time were significantly correlated (UA, p < 0.01) while UF (p < 0.05) was the only parameter predicting mechanical ventilation duration (MA). CONCLUSIONS: CPB time, blood transfused and PaO2 are independent risk factors of mortality. Fluid balance, blood transfusion, PaO2, PerfSCORE and CPB time are independent parameters for predicting morbidity. PerfSCORE is a quality of perfusion measure that objectively quantifies perfusion performance.
Resumo:
Since the inception of cardiopulmonary bypass (CPB), little progress has been made concerning the design of cardiotomy suction (CS). Because this is a major source of hemolysis, we decided to test a novel device (Smartsuction [SS]) specifically aimed at minimizing hemolysis during CPB in a clinical setting. Block randomization was carried out on a treated group (SS, n=28) and a control group (CTRL, n=26). Biochemical parameters were taken pre-, peri-, and post CPB and were compared between the two groups using the Student's t-test with statistical significance when P<0.05. No significant differences in patient demographics were observed between the two groups. Lactate dehydrogenase (LDH) and plasma free hemoglobin (PFH) pre-CPB were comparable for the CTRL and SS groups, respectively. LDH peri-CPB was 275+/-100 U/L versus 207+/-83 U/L for the CTRL and SS groups, respectively (P<0.05). PFH was 486+/-204 mg/L versus 351+/-176 mg/L for the CTRL and SS groups, respectively (P<0.05). LDH post CPB was 354+/-116 U/L versus 275+/-89 U/L for the CTRL and SS groups, respectively (P<0.05). PFH was 549+/-271 mg/L versus 460+/-254 mg/L for the CTRL and SS groups, respectively (P<0.05). Preoperative hematocrit (Hct) of 43+/-5% (CTRL) versus 37+/-5% (SS), and hemoglobin (Hb) of 141+/-16 g/L (CTRL) versus 122+/-17 g/L (SS) were significantly lower in the SS group. However, when normalized (N), the SS was capable of conserving Hct, Hb, and erythrocyte count perioperatively. Erythrocytes (N) were 59+/-5% (CTRL) versus 67+/-9% (SS); Hct (N) was 59+/-6% (CTRL) versus 68+/-9% (SS), and Hb (N) was 61+/-6% (CTRL) versus 70+/-10% (SS) (all P<0.05). This novel SS device evokes significantly lowered blood PFH and LDH values peri- and post CPB compared with the CTRL blood using a CS system. The SS may be a valuable alternative compared to traditional CS techniques.
Resumo:
Time-lapse crosshole ground-penetrating radar (GPR) data, collected while infiltration occurs, can provide valuable information regarding the hydraulic properties of the unsaturated zone. In particular, the stochastic inversion of such data provides estimates of parameter uncertainties, which are necessary for hydrological prediction and decision making. Here, we investigate the effect of different infiltration conditions on the stochastic inversion of time-lapse, zero-offset-profile, GPR data. Inversions are performed using a Bayesian Markov-chain-Monte-Carlo methodology. Our results clearly indicate that considering data collected during a forced infiltration test helps to better refine soil hydraulic properties compared to data collected under natural infiltration conditions
Resumo:
PURPOSE: This study investigated maximal cardiometabolic response while running in a lower body positive pressure treadmill (antigravity treadmill (AG)), which reduces body weight (BW) and impact. The AG is used in rehabilitation of injuries but could have potential for high-speed running, if workload is maximally elevated. METHODS: Fourteen trained (nine male) runners (age 27 ± 5 yr; 10-km personal best, 38.1 ± 1.1 min) completed a treadmill incremental test (CON) to measure aerobic capacity and heart rate (V˙O2max and HRmax). They completed four identical tests (48 h apart, randomized order) on the AG at BW of 100%, 95%, 90%, and 85% (AG100 to AG85). Stride length and rate were measured at peak velocities (Vpeak). RESULTS: V˙O2max (mL·kg·min) was similar across all conditions (men: CON = 66.6 (3.0), AG100 = 65.6 (3.8), AG95 = 65.0 (5.4), AG90 = 65.6 (4.5), and AG85 = 65.0 (4.8); women: CON = 63.0 (4.6), AG100 = 61.4 (4.3), AG95 = 60.7 (4.8), AG90 = 61.4 (3.3), and AG85 = 62.8 (3.9)). Similar results were found for HRmax, except for AG85 in men and AG100 and AG90 in women, which were lower than CON. Vpeak (km·h) in men was 19.7 (0.9) in CON, which was lower than every other condition: AG100 = 21.0 (1.9) (P < 0.05), AG95 = 21.4 (1.8) (P < 0.01), AG90 = 22.3 (2.1) (P < 0.01), and AG85 = 22.6 (1.6) (P < 0.001). In women, Vpeak (km·h) was similar between CON (17.8 (1.1) ) and AG100 (19.3 (1.0)) but higher at AG95 = 19.5 (0.4) (P < 0.05), AG90 = 19.5 (0.8) (P < 0.05), and AG85 = 21.2 (0.9) (P < 0.01). CONCLUSIONS: The AG can be used at maximal exercise intensities at BW of 85% to 95%, reaching faster running speeds than normally feasible. The AG could be used for overspeed running programs at the highest metabolic response levels.