148 resultados para static images
em Université de Lausanne, Switzerland
Resumo:
BACKGROUND: The yeast Schizosaccharomyces pombe is frequently used as a model for studying the cell cycle. The cells are rod-shaped and divide by medial fission. The process of cell division, or cytokinesis, is controlled by a network of signaling proteins called the Septation Initiation Network (SIN); SIN proteins associate with the SPBs during nuclear division (mitosis). Some SIN proteins associate with both SPBs early in mitosis, and then display strongly asymmetric signal intensity at the SPBs in late mitosis, just before cytokinesis. This asymmetry is thought to be important for correct regulation of SIN signaling, and coordination of cytokinesis and mitosis. In order to study the dynamics of organelles or large protein complexes such as the spindle pole body (SPB), which have been labeled with a fluorescent protein tag in living cells, a number of the image analysis problems must be solved; the cell outline must be detected automatically, and the position and signal intensity associated with the structures of interest within the cell must be determined. RESULTS: We present a new 2D and 3D image analysis system that permits versatile and robust analysis of motile, fluorescently labeled structures in rod-shaped cells. We have designed an image analysis system that we have implemented as a user-friendly software package allowing the fast and robust image-analysis of large numbers of rod-shaped cells. We have developed new robust algorithms, which we combined with existing methodologies to facilitate fast and accurate analysis. Our software permits the detection and segmentation of rod-shaped cells in either static or dynamic (i.e. time lapse) multi-channel images. It enables tracking of two structures (for example SPBs) in two different image channels. For 2D or 3D static images, the locations of the structures are identified, and then intensity values are extracted together with several quantitative parameters, such as length, width, cell orientation, background fluorescence and the distance between the structures of interest. Furthermore, two kinds of kymographs of the tracked structures can be established, one representing the migration with respect to their relative position, the other representing their individual trajectories inside the cell. This software package, called "RodCellJ", allowed us to analyze a large number of S. pombe cells to understand the rules that govern SIN protein asymmetry. CONCLUSIONS: "RodCell" is freely available to the community as a package of several ImageJ plugins to simultaneously analyze the behavior of a large number of rod-shaped cells in an extensive manner. The integration of different image-processing techniques in a single package, as well as the development of novel algorithms does not only allow to speed up the analysis with respect to the usage of existing tools, but also accounts for higher accuracy. Its utility was demonstrated on both 2D and 3D static and dynamic images to study the septation initiation network of the yeast Schizosaccharomyces pombe. More generally, it can be used in any kind of biological context where fluorescent-protein labeled structures need to be analyzed in rod-shaped cells. AVAILABILITY: RodCellJ is freely available under http://bigwww.epfl.ch/algorithms.html, (after acceptance of the publication).
Resumo:
BACKGROUND: Adaptations to Internal (IR) and external (ER) rotator shoulder muscles improving overhead throwing kinematics could lead to muscular strength imbalances and be considered an intrinsic risk factor for shoulder injury, as well as modified shoulder range of motion (RoM). OBJECTIVE: To establish profiles of internal and external rotation RoM and isokinetic IR and ER strength in adolescent- and national-level javelin throwers. METHODS: Fourteen healthy subjects were included in this preliminary cross-sectional study, 7 javelin throwers (JTG) and 7 nonathletes (CG). Passive internal and external rotation RoM were measured at 90 degrees of shoulder abduction. Isokinetic strength of dominant and non-dominant IR and ER was evaluated during concentric (60, 120 and 240 degrees/s) and eccentric (60 degrees/s) contractions by Con-Trex (R) dynamometer with the subject in a seated position with 45 degrees of shoulder abduction in the scapular plane. RESULTS: We reported significantly lower internal rotation and significantly higher external rotation RoM in JTG than in CG. Concentric and eccentric IR and ER strength were significantly higher for the dominant shoulder side in JTG (P < 0.05), without significant differences in ER/IR ratios. CONCLUSIONS: The main finding of this preliminary study confirmed static and dynamic shoulder stabilizer adaptations due to javelin throw practice in a population of adolescent- and national-level javelin throwers.
Resumo:
A 56-year-old man presented with a "nail" growing at the base of his glans penis. The tumor was locally excised, and microscopic examination revealed papillomatosis and hyperkeratosis of the malpighian epithelium, with a strong inflammatory reaction of the chorion and signs of local microinvasion, as well as the presence of well-differentiated squamous epithelial cells. The surgical margins were negative. The differential diagnosis was made between a benign papillomatous proliferation and verrucous carcinoma.
Resumo:
Contexte¦- Les métastases hépatiques hypovasculaires sont parfois difficile à détecter car très polymorphiques et fréquemment irrégulières. Leurs contrastes sur CT scan hépatique sont souvent faibles.¦- Lors d'un diagnostic, le radiologue ne fixe pas sa vision fovéale sur chaque pixel de l'image. Les expériences de psychophysique avec eye-tracker montrent en effet que le radiologue se concentre sur quelques points spécifiques de l'image appelés fixations. Dans ce travail, nous nous intéresserons aux capacités de détection de l'oeil lorsque l'observateur effectue une saccade entre deux points de fixation. Plus particulièrement, nous nous intéresserons à caractériser les capacités de l'oeil à détecter les signaux se trouvant en dehors de sa vision fovéale, dans ce qu'on appelle, la vision périphérique.¦Objectifs¦- Caractériser l'effet de l'excentricité de la vision sur la détectabilité des contrastes dans le cas de métastases hépatiques hypovasculaires.¦- Récolter des données expérimentales en vue de créer un modèle mathématique qui permettra, à terme, de qualifier le système d'imagerie.¦- → objectifs du TM en soit :¦o prendre en main l'eyetracker¦o traduire une problématique médicale en une expérience scientifique reproductible, quantifiable et qualifiable.¦Méthode¦Nous effectuons une expérience 2AFC (2 Alternative Forced-Choice experiment) afin d'estimer la détectabilité du signal. Pour cela, nous forcerons l'observateur à maintenir son point de fixation à un endroit défini et vérifié par l'eye-tracker. La position del'excentricité du signal tumoral généré sur une coupe de CT hépatique sera le paramètre varié. L'observateur se verra présenté tour à tour deux coupes de CT hépatique, l'une comportant le signal tumoral standardisé et l'autre ne comportant pas le signal. L'observateur devra déterminer quelle image contient la pathologie avec la plus grande probabilité.¦- Cette expérience est un modèle simplifié de la réalité. En effet, le radiologue ne fixe pas un seul point lors de sa recherche mais effectue un "scanpath". Une seconde expérience, dite en free search sera effectuée dans la mesure du temps à disposition. Lors de cette expérience, le signal standardisé sera connu de l'observateur et il n'y aura plus de point de fixation forcée. L'eyetracker suivra le scanpath effectué par l'oeil de l'observateur lors de la recherche du signal sur une coupe de CT scan hépatique. L'intérêt de cette expérience réside dans l'observation de la corrélation entre les saccades et la découverte du signal. Elle permet aussi de vérifier les résultats obtenus lors de la première expérience.¦Résultats escomptés¦- Exp1 : Quantifier l'importance de l'excentricité en radiologie et aider à améliorer la performance de recherche.¦- Exp 2 : tester la validité des résultats obtenus par la première expérience.¦Plus value escomptée¦- Récolte de données pour créer un modèle mathématique capable de déterminer la qualité de l'image radiologique.¦- Possibilité d'extension à la recherche dans les trois dimensions du CT scan hépatique.
Resumo:
This study investigates in vitro growth of human urinary tract smooth muscle cells under static conditions and mechanical stimulation. The cells were cultured on collagen type I- and laminin-coated silicon membranes. Using a Flexcell device for mechanical stimulation, a cyclic strain of 0-20% was applied in a strain-stress-time model (stretch, 104 min relaxation, 15 s), imitating physiological bladder filling and voiding. Cell proliferation and alpha-actin, calponin, and caldesmon phenotype marker expression were analyzed. Nonstretched cells showed significant better growth on laminin during the first 8 days, thereafter becoming comparable to cells grown on collagen type I. Cyclic strain significantly reduced cell growth on both surfaces; however, better growth was observed on laminin. Neither the type of surface nor mechanical stimulation influenced the expression pattern of phenotype markers; alpha-actin was predominantly expressed. Coating with the extracellular matrix protein laminin improved in vitro growth of human urinary tract smooth muscle cells.
Resumo:
Aim: To investigate static and dynamic visuospatial working memory (VSWM) processes in first-episode psychosis (FEP) patients and explore the validity of such measures as specific trait markers of schizophrenia. Methods: Twenty FEP patients and 20 age-, sex-, laterality- and education-matched controls carried out a dynamic and static VSWM paradigm. At 2-year follow up 13 patients met Diagnostic and Statistical Manual (of Mental Health Disorders) - Fourth Edition (DSM-IV) criteria for schizophrenia, 1 for bipolar disorder, 1 for brief psychotic episode and 5 for schizotypal personality disorder. Results: Compared with controls, the 20 FEP patients showed severe impairment in the dynamic VSWM condition but much less impairment in the static condition. No specific bias in stimulus selection was detected in the two tasks. Two-year follow-up evaluations suggested poorer baseline scores on the dynamic task clearly differentiated the 13 FEP patients who developed schizophrenia from the seven who did not. Conclusions: Results suggest deficits in VSWM in FEP patients. Specific exploratory analyses further suggest that deficit in monitoring-manipulation VSWM processes, especially involved in our dynamic VSWM task, can be a reliable marker of schizophrenia.
Resumo:
Motivation. The study of human brain development in itsearly stage is today possible thanks to in vivo fetalmagnetic resonance imaging (MRI) techniques. Aquantitative analysis of fetal cortical surfacerepresents a new approach which can be used as a markerof the cerebral maturation (as gyration) and also forstudying central nervous system pathologies [1]. However,this quantitative approach is a major challenge forseveral reasons. First, movement of the fetus inside theamniotic cavity requires very fast MRI sequences tominimize motion artifacts, resulting in a poor spatialresolution and/or lower SNR. Second, due to the ongoingmyelination and cortical maturation, the appearance ofthe developing brain differs very much from thehomogenous tissue types found in adults. Third, due tolow resolution, fetal MR images considerably suffer ofpartial volume (PV) effect, sometimes in large areas.Today extensive efforts are made to deal with thereconstruction of high resolution 3D fetal volumes[2,3,4] to cope with intra-volume motion and low SNR.However, few studies exist related to the automatedsegmentation of MR fetal imaging. [5] and [6] work on thesegmentation of specific areas of the fetal brain such asposterior fossa, brainstem or germinal matrix. Firstattempt for automated brain tissue segmentation has beenpresented in [7] and in our previous work [8]. Bothmethods apply the Expectation-Maximization Markov RandomField (EM-MRF) framework but contrary to [7] we do notneed from any anatomical atlas prior. Data set &Methods. Prenatal MR imaging was performed with a 1-Tsystem (GE Medical Systems, Milwaukee) using single shotfast spin echo (ssFSE) sequences (TR 7000 ms, TE 180 ms,FOV 40 x 40 cm, slice thickness 5.4mm, in plane spatialresolution 1.09mm). Each fetus has 6 axial volumes(around 15 slices per volume), each of them acquired inabout 1 min. Each volume is shifted by 1 mm with respectto the previous one. Gestational age (GA) ranges from 29to 32 weeks. Mother is under sedation. Each volume ismanually segmented to extract fetal brain fromsurrounding maternal tissues. Then, in-homogeneityintensity correction is performed using [9] and linearintensity normalization is performed to have intensityvalues that range from 0 to 255. Note that due tointra-tissue variability of developing brain someintensity variability still remains. For each fetus, ahigh spatial resolution image of isotropic voxel size of1.09 mm is created applying [2] and using B-splines forthe scattered data interpolation [10] (see Fig. 1). Then,basal ganglia (BS) segmentation is performed on thissuper reconstructed volume. Active contour framework witha Level Set (LS) implementation is used. Our LS follows aslightly different formulation from well-known Chan-Vese[11] formulation. In our case, the LS evolves forcing themean of the inside of the curve to be the mean intensityof basal ganglia. Moreover, we add local spatial priorthrough a probabilistic map created by fitting anellipsoid onto the basal ganglia region. Some userinteraction is needed to set the mean intensity of BG(green dots in Fig. 2) and the initial fitting points forthe probabilistic prior map (blue points in Fig. 2). Oncebasal ganglia are removed from the image, brain tissuesegmentation is performed as described in [8]. Results.The case study presented here has 29 weeks of GA. Thehigh resolution reconstructed volume is presented in Fig.1. The steps of BG segmentation are shown in Fig. 2.Overlap in comparison with manual segmentation isquantified by the Dice similarity index (DSI) equal to0.829 (values above 0.7 are considered a very goodagreement). Such BG segmentation has been applied on 3other subjects ranging for 29 to 32 GA and the DSI hasbeen of 0.856, 0.794 and 0.785. Our segmentation of theinner (red and blue contours) and outer cortical surface(green contour) is presented in Fig. 3. Finally, torefine the results we include our WM segmentation in theFreesurfer software [12] and some manual corrections toobtain Fig.4. Discussion. Precise cortical surfaceextraction of fetal brain is needed for quantitativestudies of early human brain development. Our workcombines the well known statistical classificationframework with the active contour segmentation forcentral gray mater extraction. A main advantage of thepresented procedure for fetal brain surface extraction isthat we do not include any spatial prior coming fromanatomical atlases. The results presented here arepreliminary but promising. Our efforts are now in testingsuch approach on a wider range of gestational ages thatwe will include in the final version of this work andstudying as well its generalization to different scannersand different type of MRI sequences. References. [1]Guibaud, Prenatal Diagnosis 29(4) (2009). [2] Rousseau,Acad. Rad. 13(9), 2006, [3] Jiang, IEEE TMI 2007. [4]Warfield IADB, MICCAI 2009. [5] Claude, IEEE Trans. Bio.Eng. 51(4) (2004). [6] Habas, MICCAI (Pt. 1) 2008. [7]Bertelsen, ISMRM 2009 [8] Bach Cuadra, IADB, MICCAI 2009.[9] Styner, IEEE TMI 19(39 (2000). [10] Lee, IEEE Trans.Visual. And Comp. Graph. 3(3), 1997, [11] Chan, IEEETrans. Img. Proc, 10(2), 2001 [12] Freesurfer,http://surfer.nmr.mgh.harvard.edu.
Resumo:
Ultrasound segmentation is a challenging problem due to the inherent speckle and some artifacts like shadows, attenuation and signal dropout. Existing methods need to include strong priors like shape priors or analytical intensity models to succeed in the segmentation. However, such priors tend to limit these methods to a specific target or imaging settings, and they are not always applicable to pathological cases. This work introduces a semi-supervised segmentation framework for ultrasound imaging that alleviates the limitation of fully automatic segmentation, that is, it is applicable to any kind of target and imaging settings. Our methodology uses a graph of image patches to represent the ultrasound image and user-assisted initialization with labels, which acts as soft priors. The segmentation problem is formulated as a continuous minimum cut problem and solved with an efficient optimization algorithm. We validate our segmentation framework on clinical ultrasound imaging (prostate, fetus, and tumors of the liver and eye). We obtain high similarity agreement with the ground truth provided by medical expert delineations in all applications (94% DICE values in average) and the proposed algorithm performs favorably with the literature.
Resumo:
Background: The posterior circulation Acute Stroke Prognosis Early CT Score (pc-ASPECTS) and the combined Pons-midbrain score quantify the extent of early ischemic changes in the posterior circulation. We compared the prognostic accuracy of both scores if applied to CT angiography (CTA) source images (CTA-SI) of patients in the Basilar Artery International Cooperation Study (BASICS).Methods: BASICS was a prospective, observational, multi-centre, registry of consecutive patients who presented with acute symptomatic basilar artery occlusion (BAO). Functional outcome was assessed at 1 month. We applied pc-ASPECTS and the combined Pons-midbrain score to CTA-SI by 3-reader-consensus. Readers were blinded to clinical data. We performed multivariable logistic regression analysis, adjusting for thrombolysis, baseline NIHSS score and age, and used the output to derive ROC curves to compare the ability of both scores to discriminate patients with favourable (modified Rankin Scale [mRS] scores 0-3) from patients with unfavourable (mRS scores 4-6) functional outcome.Results: We reviewed CTAs of 158 patients (64% men, mean age 65 _ 15 years, median NIHSS score 25 [0-38], median GCS score 7 [3-15], median onset-to-CTA time 234 minutes [11-7380]). At 1 month, 40 (25%) patients had a favourable outcome, 49 (31%) had an unfavourable outcome (mRS score 4-5) and 69 (44%) were deceased. Both techniques of assessing CTA-SI hypoattenuation in the posterior circulation showed equally good discriminative value in predicting final outcome (C-statistics; area under ROC curve 0.74 versus 0.75, respectively; p_0.37). Pc-ASPECTS dichotomized at _6 versus _6 was an independent predictor of favourable functional outcome (RR _ 2.2; CI95 1.1-4.7; p _ 0.034).Conclusion: Compared to the combined Pons-midbrain score, the pc-ASPECTS score has similar prognostic accuracy to identify patients with a favourable functional outcome in BASICS. Dichotomized pc-ASPECTS (_6 versus _6) is an independent predictor of favourable functional outcome in this population. Author Disclosures: V. Puetz: None. A. Khomenko: None. M.D. Hill: None. I. Dzialowski: None. P. Michel: None. C. Weimar: None. C.A.C. Wijman: None. H. Mattle: None. K. Muir: None. T. Pfefferkorn: None. D. Tanne: None. S. Engelter: None. K. Szabo: None. A. Algra: None. A.M. Demchuk: None. W.J. Schonewille: None.
Resumo:
Abstract-Due to the growing use of biometric technologies inour modern society, spoofing attacks are becoming a seriousconcern. Many solutions have been proposed to detect the use offake "fingerprints" on an acquisition device. In this paper, wepropose to take advantage of intrinsic features of friction ridgeskin: pores. The aim of this study is to investigate the potential ofusing pores to detect spoofing attacks.Results show that the use of pores is a promising approach. Fourmajor observations were made: First, results confirmed that thereproduction of pores on fake "fingerprints" is possible. Second,the distribution of the total number of pores between fake andgenuine fingerprints cannot be discriminated. Third, thedifference in pore quantities between a query image and areference image (genuine or fake) can be used as a discriminatingfactor in a linear discriminant analysis. In our sample, theobserved error rates were as follows: 45.5% of false positive (thefake passed the test) and 3.8% of false negative (a genuine printhas been rejected). Finally, the performance is improved byusing the difference of pore quantity obtained between adistorted query fingerprint and a non-distorted referencefingerprint. By using this approach, the error rates improved to21.2% of false acceptation rate and 8.3% of false rejection rate.